The inversion theorem for elliptic functions

Shaun Cooper

Massey University, Auckland, New Zealand
Lecture 3: Inversion for elliptic functions.
Lecture 3: Inversion for elliptic functions.

Let’s begin with a 3-page motivation.
Recall Theorem 2:

\[s(\theta - \alpha)s(\theta + \alpha)s(\beta - \gamma)s(\beta + \gamma) \]
\[+ s(\theta - \beta)s(\theta + \beta)s(\gamma - \alpha)s(\gamma + \alpha) \]
\[+ s(\theta - \gamma)s(\theta + \gamma)s(\alpha - \beta)s(\alpha + \beta) = 0. \]
Recall Theorem 2:

\[
s(\theta - \alpha)s(\theta + \alpha)s(\beta - \gamma)s(\beta + \gamma) \\
+ s(\theta - \beta)s(\theta + \beta)s(\gamma - \alpha)s(\gamma + \alpha) \\
+ s(\theta - \gamma)s(\theta + \gamma)s(\alpha - \beta)s(\alpha + \beta) = 0.
\]

This can be written in explicit form.

Let \(a^2 = bcde \) and suppose \(|q| < 1\). Then

\[
[a/b; q]_\infty [a/c; q]_\infty [a/d; q]_\infty [a/e; q]_\infty - [b; q]_\infty [c; q]_\infty [d; q]_\infty [e; q]_\infty \\
= b [a; q]_\infty [a/bc; q]_\infty [a/bd; q]_\infty [a/be; q]_\infty
\]

where

\[
[x; q]_\infty = \prod_{j=1}^{\infty} (1 - q^{j-1}x)(1 - q^jx)
\]

is the product with zeros on a bilateral geometric progression.
Let \(a^2 = bcde \) and suppose \(|q| < 1\). Then

\[
\begin{align*}
[a/b; q]_\infty [a/c; q]_\infty [a/d; q]_\infty [a/e; q]_\infty - [b; q]_\infty [c; q]_\infty [d; q]_\infty [e; q]_\infty \\
= b[a; q]_\infty [a/bc; q]_\infty [a/bd; q]_\infty [a/be; q]_\infty
\end{align*}
\]

where

\[
[x; q]_\infty = \prod_{j=1}^\infty (1 - q^{j-1}x)(1 - q^j x)
\]
Let $a^2 = bcde$ and suppose $|q| < 1$. Then

\[
\left[a/b; q\right]_{\infty} \left[a/c; q\right]_{\infty} \left[a/d; q\right]_{\infty} \left[a/e; q\right]_{\infty} - \left[b; q\right]_{\infty} \left[c; q\right]_{\infty} \left[d; q\right]_{\infty} \left[e; q\right]_{\infty}
\]

\[
= b \left[a; q\right]_{\infty} \left[a/bc; q\right]_{\infty} \left[a/bd; q\right]_{\infty} \left[a/be; q\right]_{\infty}
\]

where

\[
[x; q]_{\infty} = \prod_{j=1}^{\infty} (1 - q^{j-1}x)(1 - q^jx)
\]

Replace q with q^2, then put $a = -q^2$, $b = c = d = e = -q$ to get
Let $a^2 = bcde$ and suppose $|q| < 1$. Then

$$[a/b; q]_\infty [a/c; q]_\infty [a/d; q]_\infty [a/e; q]_\infty - [b; q]_\infty [c; q]_\infty [d; q]_\infty [e; q]_\infty$$

$$= b [a; q]_\infty [a/bc; q]_\infty [a/bd; q]_\infty [a/be; q]_\infty$$

where

$$[x; q]_\infty = \prod_{j=1}^{\infty} (1 - q^{j-1}x)(1 - q^jx)$$

Replace q with q^2, then put $a = -q^2$, $b = c = d = e = -q$ to get

$$\prod_{j=1}^{\infty} (1 + q^{2j-1})^8 - \prod_{j=1}^{\infty} (1 - q^{2j-1})^8 = 16q \prod_{j=1}^{\infty} (1 + q^{2j})^8$$

Jacobi called this “aequatio identica satis abstrusa” (nonobvious identity).
Rewrite Jacobi’s identity in the form

\[16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} + \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8} = 1 \]
Rewrite Jacobi’s identity in the form

\[
16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} + \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8} = 1
\]

Let \(x = x(q) = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \).
Rewrite Jacobi’s identity in the form

\[16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} + \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8} = 1 \]

Let \(x = x(q) = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \).

We will prove: \(x \) increases from 0 to 1 as \(q \) increases from 0 to 1.
Rewrite Jacobi’s identity in the form

\[16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} + \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8} = 1 \]

Let \(x = x(q) = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \).

We will prove: \(x \) increases from 0 to 1 as \(q \) increases from 0 to 1. Hence, the inverse function \(q = q(x) \) exists.
Rewrite Jacobi’s identity in the form

\[
16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} + \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8} = 1
\]

Let \(x = x(q) = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \).

We will prove: \(x \) increases from 0 to 1 as \(q \) increases from 0 to 1. Hence, the inverse function \(q = q(x) \) exists. In fact,

\[
q = \exp \left(-\pi \frac{F(1 - x)}{F(x)} \right), \quad \text{where} \quad F(x) = \sum_{n=0}^{\infty} \binom{2n}{n}^2 \left(\frac{x}{16} \right)^n.
\]
Rewrite Jacobi’s identity in the form

\[16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} + \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8} = 1 \]

Let \(x = x(q) = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \).

We will prove: \(x \) increases from 0 to 1 as \(q \) increases from 0 to 1. Hence, the inverse function \(q = q(x) \) exists. In fact,

\[q = \exp \left(-\pi \frac{F(1 - x)}{F(x)} \right), \quad \text{where} \quad F(x) = \sum_{n=0}^{\infty} \binom{2n}{n}^2 \left(\frac{x}{16} \right)^n. \]

Moreover,

\[\sum_{n=0}^{\infty} \binom{2n}{n}^2 \left(\frac{x}{16} \right)^n = \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^2. \]
Let \(x = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8}. \)

Observe, that \(x = 0 \) when \(q = 0 \).
Let \(x = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \).

Observe, that \(x = 0 \) when \(q = 0 \).

By Jacobi’s identity, \(1 - x = \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8} \).
Let \(x = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \).

Observe, that \(x = 0 \) when \(q = 0 \).

By Jacobi’s identity, \(1 - x = \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8} \).

This shows that \(1 - x \) is a decreasing function for \(0 < q < 1 \).
Let $x = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8}$.

Observe, that $x = 0$ when $q = 0$.

By Jacobi’s identity, $1 - x = \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8}$.

This shows that $1 - x$ is a decreasing function for $0 < q < 1$.
And, as $q \to 1^-$ it is clear $1 - x \to 0$.
Let \(x = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8}. \)

Observe, that \(x = 0 \) when \(q = 0. \)

By Jacobi’s identity, \(1 - x = \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8}. \)

This shows that \(1 - x \) is a decreasing function for \(0 < q < 1. \)

And, as \(q \to 1^- \) it is clear \(1 - x \to 0. \)

Hence, \(x \) increases from 0 to 1 as \(q \) increases from 0 to 1.
Let \(x = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8}. \)

Observe, that \(x = 0 \) when \(q = 0. \)

By Jacobi’s identity, \(1 - x = \prod_{j=1}^{\infty} \frac{(1 - q^{2j-1})^8}{(1 + q^{2j-1})^8}. \)

This shows that \(1 - x \) is a decreasing function for \(0 < q < 1. \)

And, as \(q \to 1^- \) it is clear \(1 - x \to 0. \)

Hence, \(x \) increases from 0 to 1 as \(q \) increases from 0 to 1.

This is the first of several properties we will need to know about \(x. \)
\[x = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \]
\[
\begin{align*}
x &= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \times \frac{(1 + q^{2j})^8}{(1 + q^{2j})^8} \\
&= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j})^8} \times \frac{(1 + q^{2j})^8}{(1 + q^{2j})^8}
\end{align*}
\]
x = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \times \frac{(1 + q^{2j})^8}{(1 + q^{2j})^8} \\
= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^{16}}{(1 + q^j)^8}
\[
\times = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \times \frac{(1 + q^{2j})^8}{(1 + q^{2j})^8}
\]

\[
= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^{16}}{(1 + q^{j})^8}
\]

\[
= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^{16}}{(1 + q^{j})^8} \times \frac{(1 - q^{2j})^{16}}{(1 - q^{j})^8} \times \frac{(1 - q^{j})^8}{(1 - q^{2j})^{16}}
\]
\[x = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \times \frac{(1 + q^{2j})^8}{(1 + q^{2j})^8} \]

\[= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^{16}}{(1 + q^{j})^8} \]

\[= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^{16}}{(1 + q^{j})^8} \times \frac{(1 - q^{2j})^{16}}{(1 - q^{j})^8} \times \frac{(1 - q^{j})^8}{(1 - q^{2j})^{16}} \]

\[= 16q \prod_{j=1}^{\infty} \frac{(1 - q^{4j})^{16}}{(1 - q^{2j})^8} \times \frac{(1 - q^{j})^8}{(1 - q^{2j})^{16}} \]
\[
\times = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \times \frac{(1 + q^{2j})^8}{(1 + q^{2j})^8}
\]

\[
= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^{16}}{(1 + q^{j})^8}
\]

\[
= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^{16}}{(1 + q^{j})^8} \times \frac{(1 - q^{2j})^{16}}{(1 - q^{j})^8} \times \frac{(1 - q^{j})^8}{(1 - q^{2j})^{16}}
\]

\[
= 16q \prod_{j=1}^{\infty} \frac{(1 - q^{4j})^{16}}{(1 - q^{2j})^8} \times \frac{(1 - q^{j})^8}{(1 - q^{2j})^{16}}
\]

\[
= 16q \prod_{j=1}^{\infty} \frac{(1 - q^{4j})^{16}(1 - q^{j})^8}{(1 - q^{2j})^{24}}
\]
\[
\times = 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^8}{(1 + q^{2j-1})^8} \times \frac{(1 + q^{2j})^8}{(1 + q^{2j})^8} \\
= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^{16}}{(1 + q^{2j})^8} \\
= 16q \prod_{j=1}^{\infty} \frac{(1 + q^{2j})^{16}}{(1 + q^{2j})^8} \times \frac{(1 - q^{2j})^{16}}{(1 - q^{2j})^8} \times \frac{(1 - q^j)^8}{(1 - q^{2j})^{16}} \\
= 16q \prod_{j=1}^{\infty} \frac{(1 - q^{4j})^{16}}{(1 - q^{2j})^8} \times \frac{(1 - q^j)^8}{(1 - q^{2j})^{16}} \\
= 16q \prod_{j=1}^{\infty} \frac{(1 - q^{4j})^{16}(1 - q^j)^8}{(1 - q^{2j})^{24}} \\
= 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}
\]
From the previous page, we have

\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)} \]
From the previous page, we have

\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)} \]

In a similar way, it may be shown that

\[1 - x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)} \]
From the previous page, we have

$$x = 16 \frac{\eta^{16}(4\tau)\eta^{8}(\tau)}{\eta^{24}(2\tau)}$$

In a similar way, it may be shown that

$$1 - x = \frac{\eta^{16}(\tau)\eta^{8}(4\tau)}{\eta^{24}(2\tau)}$$

and

$$z := \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^2 = \frac{\eta^{10}(2\tau)}{\eta^{4}(\tau)\eta^{4}(4\tau)} \quad \text{(use Jacobi triple product)}$$

where (recall that) \(\eta(\tau) = q^{1/24} \prod_{j=1}^{\infty} (1 - q^j) \)

and the symbol “:=” denotes a definition.
Canonical notation:

\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}. \]
Canonical notation:

\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}. \]

Note the symmetries.
Canonical notation:

\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}. \]

Note the symmetries.

Weights: \(x \) and \(1-x \) have weight 0, whereas \(z \) has weight 1.
Canonical notation:

\[x = 16 \frac{\eta^{16}(4\tau)\eta^{8}(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^{8}(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^{4}(\tau)\eta^{4}(4\tau)}. \]

Note the symmetries.

Weights: \(x \) and \(1-x \) have weight 0, whereas \(z \) has weight 1.

Exercise: Use the transformation formula

\[\eta\left(\frac{-1}{\tau}\right) = \sqrt{\frac{\tau}{i}} \eta(\tau) \]

to prove that for any real positive number \(t \),

\[x(e^{-\pi t}) + x(e^{-\pi/t}) = 1 \]

and deduce that \(x(e^{-\pi}) = \frac{1}{2}. \)

Hint: Let \(\tau = it/2. \)
\begin{align*}
x &= 16 \frac{\eta^{16}(4\tau)\eta^{8}(\tau)}{\eta^{24}(2\tau)}, \\
1-x &= \frac{\eta^{16}(\tau)\eta^{8}(4\tau)}{\eta^{24}(2\tau)}, \\
z &= \frac{\eta^{10}(2\tau)}{\eta^{4}(\tau)\eta^{4}(4\tau)}.
\end{align*}

Derivatives:
\begin{align*}
x &= 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}.
\end{align*}

Derivatives:

\begin{align*}
q \frac{d}{dq} \log \left(\frac{x}{1-x} \right) &= q \frac{d}{dq} \log \left(16 \frac{\eta^8(4\tau)}{\eta^8(\tau)} \right)
\end{align*}
\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)} , \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)} , \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)} . \]

Derivatives:

\[q \frac{d}{dq} \log \left(\frac{x}{1-x} \right) = q \frac{d}{dq} \log \left(16 \frac{\eta^8(4\tau)}{\eta^8(\tau)} \right) = \frac{1}{3} \left(4P(q^4) - P(q) \right) . \]
\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}. \]

Derivatives:

\[q \frac{d}{dq} \log \left(\frac{x}{1-x} \right) = q \frac{d}{dq} \log \left(16 \frac{\eta^8(4\tau)}{\eta^8(\tau)} \right) \]
\[= \frac{1}{3} (4P(q^4) - P(q)). \]

Note:

\[q \frac{d}{dq} \log \eta^{24}(\tau) = q \frac{d}{dq} \log \left(q \prod_{j=1}^{\infty} (1 - q^j)^{24} \right) \]
\[x = 16 \frac{\eta^{16}(4\tau) \eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau) \eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau) \eta^4(4\tau)}. \]

Derivatives:

\[
q \frac{d}{dq} \log \left(\frac{x}{1-x} \right) = q \frac{d}{dq} \log \left(16 \frac{\eta^8(4\tau)}{\eta^8(\tau)} \right)
= \frac{1}{3} \left(4P(q^4) - P(q) \right).
\]

Note:

\[
q \frac{d}{dq} \log \eta^{24}(\tau) = q \frac{d}{dq} \log \left(q \prod_{j=1}^{\infty} (1-q^j)^{24} \right)
= 1 - 24 \sum_{j=1}^{\infty} \frac{j q^j}{1-q^j} = P(q).
\]
Canonical notation:

\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}. \]

\[
q \frac{d}{dq} \log \left(\frac{x}{1-x} \right) = \frac{1}{3} \left(4P(q^4) - P(q) \right)
\]
Canonical notation:

\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}. \]

\[q \frac{d}{dq} \log \left(\frac{x}{1-x} \right) = \frac{1}{3} \left(4P(q^4) - P(q) \right) \]

\[= \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^4 \] (by sum of four squares)
Canonical notation:

\[x = 16 \frac{\eta^{16}(4\tau)\eta^{8}(\tau)}{\eta^{24}(2\tau)}, \quad 1 - x = \frac{\eta^{16}(\tau)\eta^{8}(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^{4}(\tau)\eta^{4}(4\tau)}. \]

\[q \frac{\mathrm{d}}{\mathrm{d}q} \log \left(\frac{x}{1 - x} \right) = \frac{1}{3} \left(4P(q^4) - P(q) \right) \]

\[= \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^4 \quad \text{(by sum of four squares)} \]

\[= z^2 \quad \text{(by definition)}. \]
Canonical notation:

\[x = 16 \frac{\eta^{16}(4\tau)\eta^{8}(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^{8}(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^{4}(\tau)\eta^{4}(4\tau)}. \]

\[q \frac{d}{dq} \log \left(\frac{x}{1-x} \right) = \frac{1}{3} \left(4P(q^4) - P(q) \right) \]

\[= \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^4 \quad \text{(by sum of four squares)} \]

\[= z^2 \quad \text{(by definition)}. \]

It follows that

\[q \frac{d}{dq} x = z^2 x (1-x). \]
Parameterizations in terms of z and x

\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}. \]
Parameterizations in terms of z and x

\[x = 16 \frac{\eta^{16}(4\tau)\eta^{8}(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^{8}(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^{4}(\tau)\eta^{4}(4\tau)}. \]

By rearrangement,

\[16\eta^{24}(\tau) = z^{12}x(1-x)^4, \]
\[16^2\eta^{24}(2\tau) = z^{12}x^2(1-x)^2, \]
\[16^4\eta^{24}(4\tau) = z^{12}x^4(1-x). \]
Parameterizations in terms of z and x

$$x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}.$$

By rearrangement,

$$16\eta^{24}(\tau) = z^{12}x(1-x)^4$$
$$16^2\eta^{24}(2\tau) = z^{12}x^2(1-x)^2$$
$$16^4\eta^{24}(4\tau) = z^{12}x^4(1-x).$$

Take logarithms and differentiate, to obtain (for example)

$$P(q) = \frac{12}{z} q \frac{dz}{dq} + (1 - 5x)z^4.$$
Parameterizations in terms of z and x

$$x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad 1-x = \frac{\eta^{16}(\tau)\eta^8(4\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}.$$

By rearrangement,

$$16\eta^{24}(\tau) = z^{12}x(1-x)^4$$
$$16^2\eta^{24}(2\tau) = z^{12}x^2(1-x)^2$$
$$16^4\eta^{24}(4\tau) = z^{12}x^4(1-x).$$

Take logarithms and differentiate, to obtain (for example)

$$P(q) = \frac{12}{z} q \frac{dz}{dq} + (1-5x)z^4.$$

Differentiate again (what do we need to know?)
\[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}. \]

We eventually obtain

\[\frac{d}{dx} \left(x(1-x) \frac{dz}{dx} \right) = \frac{z}{4}. \]
$$x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)}, \quad z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}.$$

We eventually obtain

$$\frac{d}{dx} \left(x(1 - x) \frac{dz}{dx} \right) = \frac{z}{4}.$$

Exercise: Let $z_1 = z \log q$. Show that

$$\frac{d}{dx} \left(x(1 - x) \frac{dz_1}{dx} \right) = \frac{z_1}{4}.$$
Given: \(x = 16 \frac{\eta^{16}(4\tau)\eta^{8}(\tau)}{\eta^{24}(2\tau)} \) and \(z = \frac{\eta^{10}(2\tau)}{\eta^{4}(\tau)\eta^{4}(4\tau)} \),

we have \(\frac{d}{dx} \left(x(1 - x)\frac{dz}{dx}\right) = \frac{z}{4} \).
Given: \(x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)} \) and \(z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)} \),

we have \(\frac{d}{dx} \left(x(1-x) \frac{dz}{dx} \right) = \frac{z}{4} \).

The general solution is

\[
z = A_2 F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; x \right) + B_2 F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; 1-x \right).
\]
Given: \[x = 16 \frac{\eta^{16}(4\tau)\eta^8(\tau)}{\eta^{24}(2\tau)} \] and \[z = \frac{\eta^{10}(2\tau)}{\eta^4(\tau)\eta^4(4\tau)}, \]

we have \[\frac{d}{dx} \left(x(1 - x) \frac{dz}{dx} \right) = \frac{z}{4}. \]

The general solution is

\[z = A_2F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; x \right) + B_2F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x \right). \]

When \(q = 0 \), we have \(x = 0 \) and \(z = 1 \).
Given: \(x = 16 \frac{\eta^{16}(4\tau)\eta^{8}(\tau)}{\eta^{24}(2\tau)} \) and \(z = \frac{\eta^{10}(2\tau)}{\eta^{4}(\tau)\eta^{4}(4\tau)} \),

we have \(\frac{d}{dx} \left(x(1 - x) \frac{dz}{dx} \right) = \frac{z}{4} \).

The general solution is

\[z = A_2 F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; x \right) + B_2 F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x \right) \].

When \(q = 0 \), we have \(x = 0 \) and \(z = 1 \).

It follows that \(A = 1 \) and \(B = 0 \).
Given: \[x = 16 \frac{\eta^{16}(4\tau)}{\eta^{24}(2\tau)} \text{ and } z = \frac{\eta^{10}(2\tau)}{\eta^{4}(\tau)\eta^{4}(4\tau)}, \]

we have \[\frac{d}{dx} \left(x(1 - x) \frac{dz}{dx} \right) = \frac{z}{4}. \]

The general solution is

\[z = A_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right) + B_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x\right). \]

When \(q = 0 \), we have \(x = 0 \) and \(z = 1 \).

It follows that \(A = 1 \) and \(B = 0 \).

We conclude that

\[z = 2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right). \]
We also have \(\frac{d}{dx} \left(x(1 - x) \frac{dz_1}{dx} \right) = \frac{z_1}{4} \) where \(z_1 = z \log q \).
We also have \[\frac{d}{dx} \left(x(1-x) \frac{dz_1}{dx} \right) = \frac{z_1}{4} \] where \(z_1 = z \log q \).

The general solution is

\[z_1 = z \log q = C \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x \right) + D \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x \right). \]
We also have \[
\frac{d}{dx} \left(x(1 - x)\frac{dz_1}{dx}\right) = \frac{z_1}{4}
\] where \(z_1 = z \log q\).

The general solution is
\[
z_1 = z \log q = C \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right) + D \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x\right).
\]

Divide by \(z\), to deduce
\[
\log q = C + D \frac{\, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x\right)}{\, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)}.
\]
We also have \[
\frac{d}{dx} \left(x(1-x) \frac{dz_1}{dx} \right) = \frac{z_1}{4}
\] where \(z_1 = z \log q\).

The general solution is

\[
z_1 = z \log q = C \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right) + D \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1-x\right).
\]

Divide by \(z\), to deduce

\[
\log q = C + D \, \frac{\, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1-x\right)}{\, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)}.
\]

When \(q \to 1^-\) we have \(x \to 1\) and \(z \to \infty\). It follows that \(C = 0\).
We also have \[\frac{d}{dx} \left(x(1 - x) \frac{dz_1}{dx} \right) = \frac{z_1}{4} \] where \(z_1 = z \log q \).

The general solution is

\[z_1 = z \log q = C_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right) + D_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x\right). \]

Divide by \(z \), to deduce

\[\log q = C + D \frac{2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x\right)}{2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)}. \]

When \(q \rightarrow 1^- \) we have \(x \rightarrow 1 \) and \(z \rightarrow \infty \). It follows that \(C = 0 \).

When \(q = e^{-\pi} \), we have \(x = \frac{1}{2} \) and it follows that \(D = -\pi \).
We also have \(\frac{d}{dx} \left(x(1-x) \frac{dz_1}{dx} \right) = z_1/4 \) where \(z_1 = z \log q \).

The general solution is

\[
z_1 = z \log q = C \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right) + D \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1-x\right).
\]

Divide by \(z \), to deduce

\[
\log q = C + D \frac{2 \, _1F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1-x\right)}{2 \, _1F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)}.
\]

When \(q \to 1^- \) we have \(x \to 1 \) and \(z \to \infty \). It follows that \(C = 0 \).

When \(q = e^{-\pi} \), we have \(x = \frac{1}{2} \) and it follows that \(D = -\pi \).

We conclude that \(q = \exp \left(-\pi \frac{2 \, _1F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1-x\right)}{2 \, _1F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)} \right) \).
A basic example of parameterization:

The circle $x^2 + y^2 = 1$ can be parameterized by the trigonometric functions

$$x = \cos t \quad \text{and} \quad y = \sin t.$$
Summary:

The hypergeometric function \(z = _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right) \) can be parameterized by modular forms:
Summary:

The hypergeometric function $z = \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)$ can be parameterized by modular forms:

$$z = \left(\sum_{n=-\infty}^{\infty} q^{n^2}\right)^2$$

and

$$x = \left(\frac{\sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2}}{\sum_{n=-\infty}^{\infty} q^{n^2}}\right)^4.$$
Summary:

The hypergeometric function $z = 2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x \right)$ can be parameterized by modular forms:

$$z = \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^2 \quad \text{and} \quad x = \left(\frac{\sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2}}{\sum_{n=-\infty}^{\infty} q^{n^2}} \right)^4 .$$

Moreover, the inverse function exists and is given by

$$q = \exp \left(-\pi \frac{2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x \right)}{2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x \right)} \right) .$$
Ramanujan: Modular Equations and Approximations to π

14. The ordinary modular equations express the relations which hold between k and l when $nK'/K = L'/L$, or $q^n = Q$, where

$$q = e^{-\pi K/K}, \quad Q = e^{-\pi L/L},$$

$$K = 1 + \left(\frac{1}{2}\right)k^2 + \left(\frac{1}{2, 4}\right)k^4 + \ldots$$

There are corresponding theories in which q is replaced by one or other of the functions

$$q_1 = e^{-\pi K_1/\sqrt{K_1}}, \quad q_2 = e^{-2\pi K_2/(K_1\sqrt{3})}, \quad q_3 = e^{-2\pi K_3/\sqrt{K_3}},$$

where

$$K_1 = 1 + \frac{1.3}{4^2}k^2 + \frac{1.3 \cdot 5.7}{4^4 \cdot 8^2}k^4 + \frac{1.3 \cdot 5.7 \cdot 9.11}{4^6 \cdot 8^4 \cdot 12^2}k^6 + \ldots,$$

$$K_2 = 1 + \frac{1.2}{3^2}k^2 + \frac{1.2 \cdot 4.5}{3^4 \cdot 6^2}k^4 + \frac{1.2 \cdot 4.5 \cdot 7.8}{3^6 \cdot 6^4 \cdot 9^2}k^6 + \ldots,$$

$$K_3 = 1 + \frac{1.5}{6^2}k^2 + \frac{1.5 \cdot 7.11}{6^4 \cdot 12^2}k^4 + \frac{1.5 \cdot 7.11 \cdot 13.17}{6^6 \cdot 12^4 \cdot 18^2}k^6 + \ldots$$

From these theories we can deduce further series for $1/\pi$, such as

$$\frac{27}{4\pi} = 2 + 17 \frac{1}{23} + \frac{1}{3} \frac{2}{27}$$

$$+ 32 \frac{1.3}{2.4} \frac{1.4}{5} \frac{1}{27} \frac{2}{27} + \ldots \ldots \ldots (31)$$

$$\frac{15 \sqrt{3}}{2\pi} = 4 + 37 \frac{1}{23} + \frac{1}{3} \frac{4}{125}$$

$$+ 70 \frac{1.3}{2.4} \frac{1.4}{5} \frac{1}{125} \frac{4}{125} + \ldots \ldots \ldots (32)$$

$$\frac{5 \sqrt{5}}{2\pi \sqrt{3}} = 1 + 12 \frac{1}{26} + \frac{1}{6} \frac{4}{125}$$

$$+ 23 \frac{1.3}{2.4} \frac{1.7}{5} \frac{11}{6} \frac{4}{125} + \ldots \ldots \ldots (33)$$

$$\frac{85 \sqrt{85}}{18\pi \sqrt{3}} = 8 + 141 \frac{1}{26} + \frac{1}{6} \frac{4}{85}$$

$$+ 274 \frac{1.3}{2.4} \frac{1.7}{5} \frac{11}{6} \frac{4}{85} + \ldots \ldots \ldots (34)$$
There are similar theories when

\[q = \exp \left(-\pi \frac{z(1-x)}{z(x)} \right), \quad z(x) = \, _2F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; x \right) \]

is replaced by any of

\[q_1 = \exp \left(-\pi \sqrt{2} \frac{z_1(1-x)}{z_1(x)} \right), \quad z_1(x) = \, _2F_1 \left(\frac{1}{4}, \frac{3}{4}; 1; x \right) \]

\[q_2 = \exp \left(-\frac{2\pi}{\sqrt{3}} \frac{z_2(1-x)}{z_2(x)} \right), \quad z_2(x) = \, _2F_1 \left(\frac{1}{3}, \frac{2}{3}; 1; x \right) \]

\[q_3 = \exp \left(-2\pi \frac{z_3(1-x)}{z_3(x)} \right), \quad z_3(x) = \, _2F_1 \left(\frac{1}{6}, \frac{5}{6}; 1; x \right) \]
Ramanujan (1914):

\[
q = \exp \left(-\frac{2\pi}{\sqrt{3}} \frac{2\, F_1 \left(\frac{1}{3}, \frac{2}{3}; 1; 1 - x \right)}{2\, F_1 \left(\frac{1}{3}, \frac{2}{3}; 1; x \right)} \right)
\]
Ramanujan (1914):

\[q = \exp \left(-\frac{2\pi}{\sqrt{3}} \frac{2F_1 \left(\frac{1}{3}, \frac{2}{3}; 1; 1 - x \right)}{2F_1 \left(\frac{1}{3}, \frac{2}{3}; 1; x \right)} \right) \]

\[x = \left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{(m+\frac{1}{3})^2 + (m+\frac{1}{3})(n+\frac{1}{3}) + (n+\frac{1}{3})^2} \right)^3 \]

\[x = \left(\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^2 + mn + n^2} \right)^3 \]
<table>
<thead>
<tr>
<th>Ramanujan</th>
</tr>
</thead>
<tbody>
<tr>
<td>• pp. 257–262, second notebook</td>
</tr>
<tr>
<td>• 27 Feb 1913, second letter to G. H. Hardy</td>
</tr>
<tr>
<td>• 1914 paper “Modular equations and approximations to $1/\pi$”</td>
</tr>
<tr>
<td>• 17 series for $1/\pi$</td>
</tr>
</tbody>
</table>
Ramanujan’s “alternative theories” of elliptic functions

Ramanujan

- pp. 257–262, second notebook
- 27 Feb 1913, second letter to G. H. Hardy
- 1914 paper “Modular equations and approximations to $1/\pi$”
 17 series for $1/\pi$

Mordell (1927), Watson (1931)

- “It is unfortunate that Ramanujan has not developed in detail the corresponding theories...”
- “There are developments of functions analogous to elliptic functions which I have not seen elsewhere...”
<table>
<thead>
<tr>
<th>Ramanujan</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp. 257–262, second notebook</td>
</tr>
<tr>
<td>27 Feb 1913, second letter to G. H. Hardy</td>
</tr>
<tr>
<td>1914 paper “Modular equations and approximations to $1/\pi$”</td>
</tr>
<tr>
<td>17 series for $1/\pi$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mordell (1927), Watson (1931)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“It is unfortunate that Ramanujan has not developed in detail the corresponding theories...”</td>
</tr>
<tr>
<td>“There are developments of functions analogous to elliptic functions which I have not seen elsewhere...”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fricke (1916)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversion formula for $2F_1(\frac{1}{6}, \frac{5}{6}; 1; x)$</td>
</tr>
</tbody>
</table>
Initial investigations into the “alternative theories”
Initial investigations into the “alternative theories”

- A book and a series of papers
- Proved all 17 of Ramanujan’s series for $1/\pi$
- Discovered the cubic theta function $\sum \sum q^{m^2+mn+n^2}$
<table>
<thead>
<tr>
<th>K. Venkatachaliengar (1988, republished 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial investigations into the “alternative theories”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- A book and a series of papers</td>
</tr>
<tr>
<td>- Proved all 17 of Ramanujan’s series for $1/\pi$</td>
</tr>
<tr>
<td>- Discovered the cubic theta function $\sum \sum q^{m^2+mn+n^2}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berndt, Bhargava and Garvan (1995)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proved all of the results on pp. 257–262 of Ramanujan’s second notebook. (Trans. Amer. Math. Soc., 82 pages)</td>
</tr>
</tbody>
</table>
Ramanujan’s “alternative theories” of elliptic functions

The $\text{2F}_1\left(\frac{1}{3}, \frac{2}{3}; 1; x\right)$ theory
<table>
<thead>
<tr>
<th>Author and Year</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. H. Chan (1998)</td>
<td>The $2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; x\right)$ theory</td>
</tr>
<tr>
<td>Berndt, Chan and Liaw (2001)</td>
<td>The $2F_1\left(\frac{1}{4}, \frac{3}{4}; 1; x\right)$ theory</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>H. H. Chan (1998)</td>
<td></td>
</tr>
<tr>
<td>Berndt, Chan and Liaw (2001)</td>
<td></td>
</tr>
<tr>
<td>K. S. Williams (2004)</td>
<td></td>
</tr>
</tbody>
</table>
Ramanujan’s “alternative theories” of elliptic functions

The $2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; x\right)$ theory

Berndt, Chan and Liaw (2001)
The $2F_1\left(\frac{1}{4}, \frac{3}{4}; 1; x\right)$ theory

The $2F_1\left(\frac{1}{3}, \frac{2}{3}; 1; x\right)$ theory

C., (2009)
A unified treatment for all four theories
By Clausen’s identity,

\[z^2 = 2F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; x \right)^2 = 3F_2 \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; 4x(1-x) \right) \]

\[= \sum_{j=0}^{\infty} \binom{2j}{j}^3 \left(\frac{x(1-x)}{16} \right)^j. \]
By Clausen’s identity,

\[z^2 = 2F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; x \right)^2 = 3F_2 \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}; 1, 1; 4x(1 - x) \right) = \sum_{j=0}^{\infty} \binom{2j}{j}^3 \left(\frac{x(1 - x)}{16} \right)^j. \]

Write \(Z = z^2 \) and \(X = x(1 - x)/16 \) so that

\[Z = \sum_{j=0}^{\infty} \binom{2j}{j}^3 X^j. \]
The series

\[Z = \sum_{j=0}^{\infty} \binom{2j}{j}^3 X^j. \]

is parameterized by

\[Z = \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^4 = \frac{1}{3} \left(4(P(q^4) - P(q)) \right) \]

and

\[X = \frac{\eta_1^4 \eta_4^4}{\eta_2^4 Z} = \frac{\eta_1^{24} \eta_4^{24}}{\eta_2^{48}} \]
The series

\[Z = \sum_{j=0}^{\infty} \binom{2j}{j}^3 X^j. \]

is parameterized by

\[Z = \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^4 = \frac{1}{3} \left(4(P(q^4) - P(q)) \right) \]

and

\[X = \frac{\eta_4^4 \eta_4^4}{\eta_2^4 Z} = \frac{\eta_1^{24} \eta_4^{24}}{\eta_2^{48}} \]

where

\[P(q) = 1 - 24 \sum_{n=1}^{\infty} \frac{q^n}{1 - q^n}, \quad \eta_k = q^{k/24} \prod_{n=1}^{\infty} (1 - q^{nk}). \]
\[f(4) := \frac{4P(q^4) - P(q)}{3} = \sum_{j=0}^{\infty} \binom{2j}{j}^3 \left(\frac{\eta_1^4 \eta_4^4}{\eta_2^4 f(4)} \right)^{2j} \]
\[
f(4) := \frac{4P(q^4) - P(q)}{3} = \sum_{j=0}^{\infty} \binom{2j}{j}^3 \left(\frac{\eta_1^4 \eta_4^4}{\eta_2^4 f(4)} \right)^{2j}
\]

\[
f(3) := \frac{3P(q^3) - P(q)}{2} = \sum_{j=0}^{\infty} \binom{2j}{j}^2 \binom{3j}{j} \left(\frac{\eta_1^2 \eta_3^2}{f(3)} \right)^{3j}
\]
\[f(4) := \frac{4P(q^4) - P(q)}{3} = \sum_{j=0}^{\infty} \binom{2j}{j}^3 \left(\frac{\eta_1^4 \eta_4^4}{\eta_2^4 f(4)} \right)^{2j} \]

\[f(3) := \frac{3P(q^3) - P(q)}{2} = \sum_{j=0}^{\infty} \binom{2j}{j}^2 \binom{3j}{j} \left(\frac{\eta_1^2 \eta_3^2}{f(3)} \right)^{3j} \]

\[f(2) := 2P(q^2) - P(q) = \sum_{j=0}^{\infty} \binom{2j}{j}^2 \binom{4j}{2j} \left(\frac{\eta_1^2 \eta_2^2}{f(2)} \right)^{4j} \]
\[f(4) := \frac{4P(q^4) - P(q)}{3} = \sum_{j=0}^{\infty} \binom{2j}{j}^3 \left(\frac{\eta_1^4 \eta_4^4}{\eta_2^4 f(4)} \right)^{2j} \]

\[f(3) := \frac{3P(q^3) - P(q)}{2} = \sum_{j=0}^{\infty} \binom{2j}{j}^2 \binom{3j}{j} \left(\frac{\eta_1^2 \eta_3^2}{f(3)} \right)^{3j} \]

\[f(2) := 2P(q^2) - P(q) = \sum_{j=0}^{\infty} \binom{2j}{j}^2 \binom{4j}{2j} \left(\frac{\eta_1^2 \eta_2^2}{f(2)} \right)^{4j} \]

\[f(1) := Q(q)^{1/2} = \sum_{j=0}^{\infty} \binom{2j}{j} \binom{3j}{j} \binom{6j}{3j} \left(\frac{\eta_1^4}{f(1)} \right)^{6j} \]

\[P(q) = 1 - 24 \sum_{j=1}^{\infty} \frac{jq^j}{1 - q^j}, \quad Q(q) = 1 + 240 \sum_{j=1}^{\infty} \frac{j^3 q^j}{1 - q^j} \]

\[\eta_m = q^{m/24} \prod_{j=1}^{\infty} (1 - q^{mj}) \]
Higher levels

\[f(4) := \frac{4P(q^4) - P(q)}{3} = \sum_{j=0}^{\infty} \binom{2j}{j}^3 \left(\frac{\eta_1^4 \eta_4^4}{\eta_2^4 f(4)} \right)^{2j} \]

\[f(5) := \frac{5P(q^5) - P(q)}{4} = \sum_{j=0}^{\infty} \binom{2j}{j} \left\{ \sum_{k=0}^{j} \binom{j}{k}^2 \binom{j + k}{k} \right\} \left(\frac{\eta_1^2 \eta_5^2}{f(5)} \right)^{2j} \]
Higher levels

\[f(4) := \frac{4P(q^4) - P(q)}{3} = \sum_{j=0}^{\infty} \binom{2j}{j}^3 \left(\frac{\eta_1^4 \eta_4^4}{\eta_2^4 f(4)} \right)^{2j} \]

\[f(5) := \frac{5P(q^5) - P(q)}{4} = \sum_{j=0}^{\infty} \binom{2j}{j} \left\{ \sum_{k=0}^{j} \binom{j}{k}^2 \binom{j+k}{k} \right\} \left(\frac{\eta_1^2 \eta_5^2}{f(5)} \right)^{2j} \]

\[s_j = \sum_{k=0}^{j} \binom{j}{k}^2 \binom{j+k}{k} \]

\[(j + 1)^2 s_{j+1} = (11j^2 + 11j + 3)s_j + j^2 s_{j-1} \]

R. Apéry: \(\zeta(2) \notin \mathbb{Q} \)
Rogers-Ramanujan continued fraction

\[
\frac{5P(q^5) - P(q)}{4} = \sum_{j=0}^{\infty} \binom{2j}{j} \left\{ \sum_{k=0}^{j} \binom{j}{k}^2 \binom{j+k}{k} \right\} \left(\frac{\eta_1^2 \eta_5^2}{f(5)} \right)^{2j}
\]
\[
\frac{5P(q^5) - P(q)}{4} = \sum_{j=0}^{\infty} \binom{2j}{j} \left\{ \sum_{k=0}^{j} \binom{j}{k}^2 \binom{j+k}{k} \right\} \left(\frac{\eta_1^2 \eta_5^2}{f(5)} \right)^{2j}
\]

\[
r = r(q) = \frac{q^{1/5}}{1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \ldots}}}}.
\]

\[
\left(\frac{\eta_1^2 \eta_5^2}{f(5)} \right)^2 = \frac{r^5(1 - 11r^5 - r^{10})}{(1 + r^{10})^2}.
\]

The Rogers-Ramanujan continued fraction is an analogue of the elliptic modulus \(k \).
More precisely, \(r^5/(1 + r^{10}) \) plays the role of \(k^2 \).
Summary of Lecture 3:

The hypergeometric function
\[z = \binom{1}{2} \binom{1}{2} \binom{1}{x} \]
can be parameterized by the modular forms
\[z = \left(\sum_{n=-\infty}^{\infty} q^n \right)^2 \]
and
\[x = \left(\sum_{n=-\infty}^{\infty} q^n \left(n + \frac{1}{2} \right)^2 \right) \left(\sum_{n=-\infty}^{\infty} q^n \right)^2. \]

Inverse:
\[q = \exp \left(-\frac{\pi^2}{2} \binom{1}{2} \binom{1}{2} \binom{1}{1-x} \right) \binom{1}{2} \binom{1}{2} \binom{1}{x} \]

This is the level 4 theory, developed by Jacobi, before "levels" were invented.

Similar theories: levels \(1 \leq \ell \leq 18, 20, 21, 22, 23, 24, 25, 33, 35. \)

E.g., Cooper's book has levels \(1 \leq \ell \leq 12. \)

Other levels are open to investigation. (End of lecture 3)
Summary of Lecture 3:

The hypergeometric function \(z = {}_2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right) \) can be parameterized by the modular forms

\[
z = \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^2 \quad \text{and} \quad x = \left(\frac{\sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2}}{\sum_{n=-\infty}^{\infty} q^{n^2}} \right)^4.
\]
Summary of Lecture 3:

The hypergeometric function \(z = \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right) \) can be parameterized by the modular forms

\[
z = \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^2 \quad \text{and} \quad x = \left(\frac{\sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2}}{\sum_{n=-\infty}^{\infty} q^{n^2}} \right)^4.
\]

Inverse: \(q = \exp \left(-\pi \frac{\, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x\right)}{\, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)} \right) \).
Summary of Lecture 3:

The hypergeometric function $z = 2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)$ can be parameterized by the modular forms

$$z = \left(\sum_{n=-\infty}^{\infty} q^{n^2}\right)^2 \quad \text{and} \quad x = \left(\sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2}\right)^4$$

Inverse: $q = \exp\left(-\pi \frac{2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x\right)}{2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)}\right)$.

This is the level 4 theory, developed by Jacobi, before “levels” were invented.
Summary of Lecture 3:

The hypergeometric function $z = \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)$ can be parameterized by the modular forms

$$z = \left(\sum_{n=-\infty}^{\infty} q^{n^2}\right)^2 \quad \text{and} \quad x = \left(\frac{\sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2}}{\sum_{n=-\infty}^{\infty} q^{n^2}}\right)^4.$$

Inverse: $q = \exp\left(-\pi \frac{\, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; 1-x\right)}{\, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)}\right)$.

This is the level 4 theory, developed by Jacobi, before “levels” were invented.

Similar theories: levels $1 \leq \ell \leq 18, 20, 21, 22, 23, 24, 25, 33, 35$.
Summary of Lecture 3:

The hypergeometric function \(z = 2F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; x \right) \) can be parameterized by the modular forms

\[
z = \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^2 \quad \text{and} \quad x = \left(\frac{\sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2}}{\sum_{n=-\infty}^{\infty} q^{n^2}} \right)^4.
\]

Inverse: \(q = \exp \left(-\pi \frac{2F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; 1 - x \right)}{2F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; x \right)} \right). \)

This is the level 4 theory, developed by Jacobi, before “levels” were invented.

Similar theories: levels \(1 \leq \ell \leq 18, 20, 21, 22, 23, 24, 25, 33, 35. \)

E.g., Cooper’s book has levels \(1 \leq \ell \leq 12. \)
Summary of Lecture 3:

The hypergeometric function $z = \,_{2}F_{1}\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)$ can be parameterized by the modular forms

$$z = \left(\sum_{n=-\infty}^{\infty} q^{n^2} \right)^2 \quad \text{and} \quad x = \left(\frac{\sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2}}{\sum_{n=-\infty}^{\infty} q^{n^2}} \right)^4.$$

Inverse: $q = \exp\left(-\pi \frac{\,_{2}F_{1}\left(\frac{1}{2}, \frac{1}{2}; 1; 1-x\right)}{\,_{2}F_{1}\left(\frac{1}{2}, \frac{1}{2}; 1; x\right)} \right)$.

This is the level 4 theory, developed by Jacobi, before “levels” were invented.

Similar theories: levels $1 \leq \ell \leq 18, 20, 21, 22, 23, 24, 25, 33, 35$.

E.g., Cooper’s book has levels $1 \leq \ell \leq 12$.

Other levels are open to investigation. (End of lecture 3)