On metric dimension of flower graphs $f_{n \times m}$ and convex polytopes

Muhammad Imran1, Fozia Bashir2, Abdul Q. Baig1, Syed Ahtsham Ul Haq Bokhary3, Ayesha Riasat1, Ioan Tomescu1,4

1 Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Town, Lahore, Pakistan

2 Department of Mathematics, Lahore College for Women University Lahore, Pakistan

3 Center for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan

4 Faculty of Mathematics and Computer Science, University of Bucharest Str. Academiei, 14, 010014 Bucharest, Romania

E-mail: {imrandhab, fozia.gc, aqbaig1, sihtsham, ayesha.riyasat}@gmail.com, ioan@fmi.unibuc.ro

2000 Mathematics Subject Classification: 05C12

Abstract. Let G be a connected graph and $d(x, y)$ be the distance between the vertices x and y. A subset of vertices $W = \{w_1, w_2, \ldots, w_k\}$ is called a resolving set for G if for every two distinct vertices $x, y \in V(G)$, there is a vertex $w_i \in W$ such that $d(x, w_i) \neq d(y, w_i)$. A resolving set containing a minimum number of vertices is called a metric basis for G and the number of vertices in a metric basis is its metric dimension $\text{dim}(G)$.

Let \mathcal{F} be a family of connected graphs $G_n : \mathcal{F} = (G_n)_{n \geq 1}$ depending on n as follows: the order $|V(G)| = \phi(n)$ and $\lim_{n \to \infty} \phi(n) = \infty$.

If there exists a constant $C > 0$ such that $\text{dim}(G) \leq C$ for every $n \geq 1$ then we shall say that \mathcal{F} has bounded metric dimension; otherwise \mathcal{F} has unbounded metric dimension. If all graphs in \mathcal{F} have the same metric dimension (which does not depend on n), then \mathcal{F} is called a family with constant metric dimension.

The metric dimension of some classes of plane graphs has been determined in [3], [4], [5], [10], [12], [15] and [22], while metric dimension of some classes of convex polytopes has been studied in [10]. In this paper this study is extended, by considering flower graphs $f_{n \times m}$ and two classes of graphs associated to convex polytopes.

* This research is partially supported by Abdus Salam School of Mathematical Sciences, Lahore, Pakistan
Keywords: Metric dimension, basis, resolving set, convex polytopes, flower graphs

References