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EXACT SOLUTIONS FOR SOME UNSTEADY FLOWS
OF GENERALIZED SECOND GRADE FLUIDS

IN CYLINDRICAL DOMAINS

AMIR MAHMOOD∗, CONSTANTIN FETECAU∗∗, IMRAN SIDDIQUE∗∗∗

Abstract. The velocity field and the adequate shear stress, correspond-
ing to the unsteady flow of generalized second grade fluids due to a con-
stantly accelerating circular cylinder, are determined by means of the Han-
kel and Laplace transforms. The solutions that have been obtained satisfy
all imposed initial and boundary conditions and for β → 1 reduce to the
similar solutions for the second grade fluids performing the same motion.
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1. Introduction

Among many constitutive assumptions that have been employed to study
the non-Newtonian behavior of the fluids, one class that has gained support
from both the experimentalists and the theoreticians is that of Rivlin-Ericksen
fluids of second grade. The Cauchy stress tensor T for such fluids is given by
[1-7].

T = −pI + µA1 + α1A2 + α2A2
1, (1)

where −p is the pressure, I is the unit tensor, µ is the coefficient of viscosity,
α1 and α2 are the normal stress moduli and A1 and A2 are the kinematic
tensors defined through

A1 = gradv + (gradv)T , A2 =
dA1

dt
+ A1(gradv) + (gradv)TA1. (2)
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In the above relations, v is the velocity, d/dt denotes the material time deriv-
ative and grad the gradient operator. Since the fluid is incompressible, it can
undergo only isochoric motions and hence

div v = trA1 = 0. (3)

If this model is required to be compatible with thermodynamics, then the
material moduli must meet the following restrictions

µ ≥ 0, α1 ≥ 0 and α1 + α2 = 0. (4)

The sign of the material moduli α1 and α2 has been the subject of much
controversy. A comprehensive discussion on the restrictions given in (4), as
well as a critical review on the fluids of differential type, can be found in the
extensive work of Dunn and Rajagopal [8].

Generally, the constitutive equation of the generalized second grade fluids
has the same form as (1), but A2 is defined by [9-12].

A2 = Dβ
t A1 + A1(gradv) + (gradv)TA1, (5)

where Dβ
t is the Riemann-Liouville fractional calculus operator of order β with

respect to t defined as

Dβ
t f(t) =

1
Γ(1− β)

d

dt

∫ t

0
(t− τ)−βf(τ) dτ, 0 < β ≤ 1, (6)

where Γ(·) is the Gamma function. When β = 1, Eq. (5) may be simplified as
(2)2, while for α1 = 0 the constitutive relationship (1) describes the Rainer-
Rivlin viscous fluid.

In this paper, we are interested into the motion of a generalized second grade
fluid between two infinite coaxial circular cylinders, one of them sliding along
their common axis with a given time-dependent velocity At. For completeness
we consider the general case when both cylinders are sliding along their com-
mon axis with the velocities A1t and A2t. From the general case, we obtain
the velocity fields and the adequate shear stresses corresponding to different
special cases. The respective solutions for the motion through an infinite cir-
cular cylinder are also presented.

2. Starting Flow Between Two Concentric Cylinders

Suppose that an incompressible generalized second grade fluid at rest is
situated in the annular region between two infinite straight circular cylinders
of radii R1 and R2(> R1). At time zero, both cylinders suddenly begin to
slide along their common axis (r = 0) with the velocities A1t and A2t. Owing
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to the shear, the fluid between cylinders is gradually moved, its velocity being
of the form

v = v(r, t) = v(r, t) ez, (7)
where ez is the unit vector along z-axis. For such flows the constraint of in-
compressibility is automatically satisfied.

Introducing (7) into the constitutive equation, we find that

τ(r, t) = (µ + α1D
β
t )

∂v(r, t)
∂r

, (8)

where τ(r, t) = Srz(r, t) is the shear stress, which is different of zero. In
the absence of body forces and a pressure gradient in the axial direction, the
balance of the linear momentum leads to the relevant equation

ρ
∂v(r, t)

∂t
=

(
∂

∂r
+

1
r

)
τ(r, t). (9)

Eliminating τ(r, t) between Eqs. (8) and (9) we get the governing equation

∂v(r, t)
∂t

= (ν + αDβ
t )

(
∂2

∂r2
+

1
r

∂

∂r

)
v(r, t); r ∈ (R1, R2), t > 0, (10)

where α = α1/ρ and ν = µ/ρ is the kinematic viscosity of the fluid (ρ being
its constant density).

The appropriate initial and boundary conditions are

v(r, 0) = 0, r ∈ (R1, R2); v(R1, t) = A1t, v(R2, t) = A2t for t > 0. (11)

2.1. Calculation of the Velocity Field. Applying the Laplace transform
to Eqs. (10) and (11) and using the Laplace transform formula for sequential
fractional derivatives [13], we obtain the ordinary differential equation

∂2v(r, q)
∂r2

+
1
r

∂v(r, q)
∂r

− q

αqβ + ν
v(r, q) = 0; r ∈ (R1, R2), (12)

where the image function v(r, q) of v(r, t) has to satisfy the conditions

v(R1, q) =
A1

q2
, v(R2, q) =

A2

q2
. (13)

In the following, let us denote by

vn(q) =
∫ R2

R1

rv(r, q)B0(r rn)dr; n = 1, 2, 3, · · ·, (14)

the finite Hankel transforms of v(r, q), where rn are the positive roots of the
transcendental equation B0(R1 r) = 0 and

B0(r rn) = J0(r rn)Y0(R2 rn)− J0(R2 rn)Y0(r rn). (15)
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In the above relation, J0(·) and Y0(·) are Bessel functions of order zero of the
first and second kind. Applying the finite Hankel transform to Eq. (12) and
taking into account the conditions (13), we find that [14].

2[A2J0(R1 rn)−A1J0(R2 rn)]
πq2J0(R1 rn)

− r2
nvn(q)− q

αqβ + ν
vn(q) = 0, (16)

or equivalently,

vn(q) =
2[A2J0(R1 rn)−A1J0(R2 rn)]

πJ0(R1 rn)
αqβ + ν

q2[αr2
nqβ + q + νr2

n]
. (17)

In order to determine v(r, q), we firstly write vn(q) under the suitable form

vn(q) =
2

πr2
n

A2J0(R1 rn)−A1J0(R2 rn)
J0(R1 rn)

1
q2
−

− 2
πr2

n

A2J0(R1 rn)−A1J0(R2 rn)
J0(R1 rn)

1
q[αr2

nqβ + q + νr2
n]

(18)

and use the inverse Hankel transform formula [14].

v(r, q) =
π2

2

∞∑

n=1

r2
nJ2

0 (R1 rn)
J2

0 (R1 rn)− J2
0 (R2 rn)

vn(q)B0(r rn). (19)

Furthermore, in order to avoid the burdensome calculations of residues and
contour integrals, we apply the discrete inversion Laplace transform method
[11, 12], writing

1
q[αr2

nqβ + q + νr2
n]

=
1

qβ+1[νr2
nq−β + (q1−β + αr2

n)]
=

=
∞∑

k=0

(−νr2
n)kq−βk−β−1

(q1−β + αr2
n)k+1

(20)

and use Eq. (A2), where [15]

Ga, b, c(dn, t) =
∞∑

j=0

(c)j(dn)jt(j+c)a−b−1

Γ(j + 1)Γ[(j + c)a− b]
; Re(ac− b) > 0, Re(q) > 0, (21)

a = 1− β, b = −βk − β − 1, c = k + 1, dn = −αr2
n, |dn/qa| < 1 and (c)j

is the Pochhammer polynomial [15].

Finally, Eqs. (18)-(20), (A1) and (21) imply

v(r, t) =
A1 ln(R2/r) + A2 ln(r/R1)

ln(R2/R1)
t−



Exact Solutions for Some Unsteady Flows of Generalized Second Grade Fluids ... 175

−π
∞∑

n=1

J0(R1rn)[A2J0(R1rn)−A1J0(R2rn)]
J2

0 (R1rn)− J2
0 (R2rn)

B0(rrn)×

×
∞∑

k=0

(−νr2
n)kGa, b, c(−αr2

n, t), (22)

or equivalently,

v(r, t) =
A1 ln(R2/r) + A2 ln(r/R1)

ln(R2/R1)
t−

−π

∞∑

n=1

J0(R1rn)[A2J0(R1rn)−A1J0(R2rn)]
J2

0 (R1rn)− J2
0 (R2rn)

B0(rrn)×

×
∞∑

j, k=0

(−αr2
n)j(−νr2

n)k(k + 1)j tk+1+(1−β)j

Γ(j + 1)Γ[k + 2 + (1− β)j]
. (23)

2.2. Calculation of Shear Stress. Applying the Laplace transform to Eq.
(8), we find that

τ(r, q) = (µ + α1q
β)

∂v(r, q)
∂r

, (24)

where

∂v(r, q)
∂r

=
A2 −A1

r ln(R2/R1)
1
q2

+ π
∞∑

n=1

rnJ0(R1rn)[A2J0(R1rn)−A1J0(R2rn)]
J2

0 (R1rn)− J2
0 (R2rn)

×

×B01(rrn)
∞∑

j, k=0

(−αr2
n)j(−νr2

n)k(k + 1)j

Γ(j + 1)
1

qk+2+(1−β)j
, (25)

has been obtained from (23) and

B01(rrn) = J1(rrn)Y0(R2rn)− J0(R2rn)Y1(rrn).

Introducing (25) into (24) and applying again the discrete inversion Laplace
transform method to the obtained result, we find for the shear stress the
expression

τ(r, t) =
µ(A2 −A1)
r ln(R2/R1)

t +
α1(A2 −A1)
r ln(R2/R1)

t1−β

Γ(2− β)
+

+π
∞∑

n=1

rnJ0(R1rn)[A2J0(R1rn)−A1J0(R2rn)]
J2

0 (R1rn)− J2
0 (R2rn)

×

×B01(rrn)
∞∑

j, k=0

(−αr2
n)j(−νr2

n)k(k + 1)j

Γ(j + 1)
×
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×
[

µtk+1+(1−β)j

Γ[k + 2 + (1− β)j)]
+

α1t
k+1+(1−β)j−β

Γ[k + 2 + (1− β)j − β]

]
. (26)

3. Starting Flow Through a Circular Cylinder

Let us now assume that our fluid is at rest in an infinite circular cylinder
of radius R. At time t = 0+, the cylinder is subject to a translation along its
axis with a time dependent velocity At. Due to the shear the fluid is gradually
moved, its velocity and the governing equation being of the same forms as (7)
and (10), respectively. The corresponding initial and boundary conditions are

v(r, 0) = 0, r ∈ [0, R); v(R, t) = At, t > 0. (27)

Applying again the Laplace transform to Eq. (10) and having in mind the
initial and boundary conditions (27), we find for v(r, q) the same ordinary
differential equation (12), with the condition

v(R, q) = A/q2. (28)

Now, multiplying Eq. (12) by rJ0(rrn) where rn are the positive roots of the
transcendental equation J0(Rr) = 0 and integrating with respect to r from 0
to R, we find for the new Hankel transforms

vn(q) =
∫ R

0
rv(r, q)J0(rrn)dr; n = 1, 2, 3, · · ·, (29)

of v(r, q) the expression (see also Eq. (28) and (A3))

vn(q) = ARrnJ1(Rrn)
ν + αqβ

q2(q + νr2
n + αr2

nqβ)
, (30)

or equivalently,

vn(q) =
AR

rn
J1(Rrn)

[
1
q2
− 1

q(q + νr2
n + αr2

nqβ)

]
. (31)

Applying the inverse Hankel transform [14] to Eq. (31) and using (A3), it
results that

v(r, q) =
A

q2
− 2A

R

∞∑

n=1

J0(rrn)
rnJ1(Rrn)

1
q(q + νr2

n + αr2
nqβ)

. (32)

Finally, following the same way as before, we find for v(r, t) the expression

v(r, t) = At− 2A

R

∞∑

n=1

J0(rrn)
rnJ1(Rrn)

∞∑

k=0

(−νr2
n)kGa, b, c(−α r2

n, t) =
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= At− 2A

R

∞∑

n=1

J0(rrn)
rnJ1(Rrn)

∞∑

j, k=0

(−α r2
n)j(−νr2

n)k(k + 1)j

Γ(j + 1)
×

× tk+1+(1−β)j

Γ[k + 2 + (1− β)j]
. (33)

Introducing (33) into (24) we find

τ(r, q) =
2A

R

∞∑

n=1

J1(rrn)
J1(Rrn)

∞∑

j, k=0

(−α r2
n)j(−νr2

n)k(k + 1)j

Γ(j + 1)
×

×
[

µ

qk+2+(1−β)j
+

α1

qk+2+(1−β)j−β

]
(34)

and from here the shear stress

τ(r, t) =
2A

R

∞∑

n=1

J1(rrn)
J1(Rrn)

∞∑

j, k=0

(−α r2
n)j(−νr2

n)k(k + 1)j

Γ(j + 1)
×

×
[

µtk+1+(1−β)j

Γ[k + 2 + (1− β)j]
+

α1t
k+1+(1−β)j−β

Γ[k + 2 + (1− β)j − β]

]
. (35)

4. The Special Case: β → 1

Making β → 1 into Eqs. (23), (26), (33) and (35) we obtain the similar
solutions for a second grade fluid performing the same motion. The last two
equalities become

v(r, t) = At− 2At

R

∞∑

n=1

J0(rrn)
rnJ1(Rrn)

∞∑

j, k=0

(−α r2
n)j(−ν t r2

n)k(k + 1)j

Γ(j + 1)Γ(k + 2)
(36)

and

τ(r, t) =
2ρAt

R

∞∑

n=1

J1(rrn)
J1(Rrn)

∞∑

j, k=0

(−α r2
n)j(−ν t r2

n)k(k + 1)j

Γ(j + 1)Γ(k + 1)

(
ν

k + 1
+

α

t

)
.

(37)

On the other hand, Eq. (32) for β → 1 can be written in the suitable form

v(r, q) =
A

q2
− 2A

νR

∞∑

n=1

J0(rrn)
r3
nJ1(Rrn)

[
1
q
−

1+αr2
n

νr2
n

1 + 1+αr2
n

νr2
n

q

]
, (38)

from which it immediately results the solution

v(r, t) = At− 2A

νR

∞∑

n=1

J0(rrn)
r3
nJ1(Rrn)

[
1− exp

(
− νr2

n

1 + αr2
n

t

)]
, (39)
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obtained in [17] by a different method. From Eqs. (36) and (39) we get the
identity

1
ν r2

n

[
1− exp

(
− ν r2

n

1 + αr2
n

t

)]
=

∞∑

j, k=0

(−α r2
n)j(−ν r2

n)k(k + 1)j

Γ(j + 1)Γ(k + 2)
tk+1, (40)

that has been numerically proved.

Introducing (38) into (24) and making all calculi, we again attain to the known
result

τ(r, t) =
2ρA

R

∞∑

n=1

J1(rrn)
r2
nJ1(Rrn)

[
1− 1

1 + αr2
n

exp
(
− ν r2

n

1 + αr2
n

t

)]
, (41)

that together with (37) implies the identity

1− 1
1 + αr2

n

exp
(
− ν r2

n

1 + αr2
n

t

)
=

∞∑

j, k=0

(−α r2
n)j(−ν r2

n)k(k + 1)j

Γ(j + 1)Γ(k + 1)
×

×
(

νr2
n

k + 1
+

αr2
n

t

)
tk+1. (42)

which, of course, has been also proved numerically.

5. Conclusion

Our purpose in this paper was to establish exact solutions for the velocity
field and shear stress corresponding to the flow of a generalized second grade
fluid due to an infinite circular cylinder subject to a translation along its axis
with a velocity of constant acceleration A. However, for completeness, we have
also considered the case of the flow between two coaxial circular cylinders, both
cylinders have been assumed to slide along their common axis with velocities
of constant accelerations A1 and A2. Making A1 = 0 and A2 = A into (23),
for instance, we obtain the velocity field

v(r, t) = At
ln(r/R1)

ln(R2/R1)
− πAt

∞∑

n=1

J2
0 (R1rn)

J2
0 (R1rn)− J2

0 (R2rn)
B0(rrn)×

×
∞∑

j, k=0

(−α r2
n)j(−ν r2

n)k(k + 1)j

Γ(j + 1)Γ[k + 2 + (1− β)j]
tk+(1−β)j , (43)

corresponding to the flow between cylinders, the inner cylinder being at rest.

The solutions that have been obtained, presented under integral and series
forms in terms of the generalized functions Ga, b, c(d, t), satisfy all imposed ini-
tial and boundary conditions and for β → 1 reduce to the similar solutions
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for second grade fluids. Finally, the solutions for the flow through an infinite
circular cylinder have been also established and some known results have been
recovered as special cases of our general solutions.
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Appendix

Some results used in the text:

The finite Hankel transform of the function

a(r) =
A2 −A1

ln(R2/R1)
ln r +

A1 ln R2 −A2 lnR1

ln(R2/R1)
,

satisfying a(R1) = A1 and a(R2) = A2 is

an =
∫ R2

R1

ra(r) B0(rrn)dr =
2

πr2
n

A2J0(R1rn)−A1J0(R2rn)
J0(R1rn)

. (A1)

In order to prove (A1), we integrate by parts and use the next identities:∫
J1(u)du = −J0(u), J1(R1rn)Y0(R1rn)− J0(R1rn)Y1(R1rn) =

2
πR1rn

and

J1(R2rn)Y0(R2rn)− J0(R2rn)Y1(R2rn) =
2

πR2rn
if B0(R1rn) = 0.

L−1

{
qb

(qa − d)c

}
= Ga, b, c(d, t); Re(ac− b) > 0, Re(q) > 0,

∣∣ d

qa

∣∣ < 1. (A2)
∫ R

0
rJ0(rrn)dr =

R

rn
J1(Rrn). (A3)


