ON THE CONNECTED DETOUR NUMBER OF A GRAPH

A. P. SANTHAKUMARAN ${ }^{1}$, S. ATHISAYANATHAN ${ }^{2}$

Abstract

For two vertices u and v in a graph $G=(V, E)$, the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. A $u-v$ path of length $D(u, v)$ is called a $u-v$ detour. A set $S \subseteq V$ is called a detour set of G if every vertex in G lies on a detour joining a pair of vertices of S. The detour number $d n(G)$ of G is the minimum order of its detour sets and any detour set of order $d n(G)$ is a detour basis of G. A set $S \subseteq V$ is called a connected detour set of G if S is detour set of G and the subgraph $G[S]$ induced by S is connected. The connected detour number $c d n(G)$ of G is the minimum order of its connected detour sets and any connected detour set of order $c d n(G)$ is called a connected detour basis of G. Graphs G with detour diameter $D \leq 4$ are characterized when $c d n(G)=p, c d n(G)=p-1, c d n(G)=p-2$ or $c d n(G)=2$. A subset T of a connected detour basis S of G is a forcing subset for S if S is the unique connected detour basis containing T. The forcing connected detour number $f c d n(S)$ of S is the minimum cardinality of a forcing subset for S. The forcing connected detour number $f c d n(G)$ of G is $\min \{f c d n(S)\}$, where the minimum is taken over all connected detour bases S in G. The forcing connected detour numbers of certain classes of graphs are determined. It is also shown that for each pair a, b of integers with $0 \leq a<b$ and $b \geq 3$, there is a connected graph G with $f c d n(G)=a$ and $c d n(G)=b$.

Key words: detour, connected detour set, connected detour basis, connected detour number, forcing connected detour number.
AMS SUBJECT: 05C12.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively.

[^0]We consider connected graphs with at least two vertices. For basic definitions and terminologies, we refer to $[1,4]$.

For vertices u and v in a connected graph G, the detour distance $D(u, v)$ is the length of a longest $u-v$ path in G. A $u-v$ path of length $D(u, v)$ is called a $u-v$ detour. It is known that the detour distance is a metric on the vertex set V. The detour eccentricity $e_{D}(v)$ of a vertex v in G is the maximum detour distance from v to a vertex of G. The detour radius, $\operatorname{rad}_{D} G$ of G is the minimum detour eccentricity among the vertices of G, while the detour diameter, $\operatorname{diam}_{D} G$ of G is the maximum detour eccentricity among the vertices of G. These concepts were studied by Chartrand et al. [2].

A vertex x is said to lie on a $u-v$ detour P if x is a vertex of P including the vertices u and v. A set $S \subseteq V$ is called a detour set if every vertex v in G lies on a detour joining a pair of vertices of S. The detour number $d n(G)$ of G is the minimum order of a detour set and any detour set of order $d n(G)$ is called a detour basis of G. A vertex v that belongs to every detour basis of G is a detour vertex in G. If G has a unique detour basis S, then every vertex in S is a detour vertex in G. These concepts were studied by Chartrand et al. [3].

The concepts of connected detour number and upper connected detour number were introduced and studied by Santhakumaran and Athisayanathan in [5]. A set $S \subseteq V$ is called a connected detour set of G if S is a detour set of G and the subgraph $G[S]$ induced by S is connected. The connected detour number $\operatorname{cdn}(G)$ of G is the minimum order of its connected detour sets and any connected detour set of order $\operatorname{cdn}(G)$ is called a connected detour basis of G. A vertex v in a graph G is a connected detour vertex if v belongs to every connected detour basis of G. If G has a unique connected detour basis S, then every vertex in S is a connected detour vertex of G. These concepts have interesting applications in the Channel Assignment Problem in radio technologies.

For the graph G given in Figure 1.1, the sets $S_{1}=\left\{v_{1}, v_{3}\right\}, S_{2}=\left\{v_{1}, v_{5}\right\}$ and $S_{3}=\left\{v_{1}, v_{4}\right\}$ are the three detour bases of G so that $d n(G)=2$. It is clear that no two element subset of V is a connected detour set of G. However the set $S_{4}=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a connected detour basis of G so that $c d n(G)=3$. Also the set $S_{5}=\left\{v_{1}, v_{2}, v_{5}\right\}$ is another connected detour basis of G. Thus there can be more than one connected detour basis for a graph G.

The following theorems are used in the sequel.
Theorem 1.1. [5] For any graph G of order $p \geq 2,2 \leq d n(G) \leq \operatorname{cdn}(G) \leq p$.
Theorem 1.2. [5] Let G be a connected graph with cut-vertices and S a connected detour set of G. Then for any cut-vertex v of G, every component of $G-v$ contains an element of S.

Figure 1.1. G
Theorem 1.3. [5] All the end-vertices and the cut-vertices of a connected graph G belong to every connected detour set of G.

Theorem 1.4. [5] If G is a graph of order $p \geq 2$ such that every vertex v of G is either an end-vertex or a cut-vertex, then $\operatorname{cdn}(G)=p$.
Theorem 1.5. [5] If T is a tree of order $p \geq 2$, then $\operatorname{cdn}(T)=p$.
Theorem 1.6. [5] Let $G=\left(K_{n_{1}} \cup K_{n_{2}} \cup \ldots \cup K_{n_{r}} \cup k K_{1}\right)+v$ be a block graph of order $p \geq 4$ such that $r \geq 1$, each $n_{i} \geq 2$ and $n_{1}+n_{2}+\ldots+n_{r}+k=p-1$. Then $\operatorname{cdn}(G)=r+k+1$.
Theorem 1.7. [5] Let G be a Hamilton graph of order $p \geq 3$. Then $c d n(G)=$ 2.

Theorem 1.8. [5] Let G be the complete graph $K_{p}(p \geq 2)$ or the cycle C_{p} or the complete bipartite graph $K_{m, n}(m, n \geq 2)$. Then a set S of vertices is a connected detour basis if and only if S consists of two adjacent vertices of G.

Theorem 1.9. [5] If G is the complete graph $K_{p}(p \geq 2)$ or the cycle C_{p} or the complete bipartite graph $K_{m, n}(m, n \geq 2)$, then $\operatorname{cdn}(G)=2$.

Chartrand et al. [3] proved the following theorem, which gives an upper bound for the detour number of a graph in terms of its order and detour diameter D.

Theorem 1.10. [3] If G is a nontrivial connected graph of order p and detour diameter D, then $d n(G) \leq p-D+1$.

Theorem 1.10 does not hold in the case of connected detour number $c d n(G)$ of a graph G. Santhakumaran and Athisayanathan [5] showed the existence of graphs G for which $c d n(G)=p-D+1, \operatorname{cdn}(G)>p-D+1$ and $c d n(G)<$ $p-D+1$. For the graph G in Figure 1.2(a), $p=8, D=4$ and by Theorem 1.6, $\operatorname{cdn}(G)=5$ so that $\operatorname{cdn}(G)=p-D+1$. It also follows similarly from Theorem 1.6 that for the graphs G in Figure 1.2(b) and Figure 1.2(c), $c d n(G)>$ $p-D+1$ and $\operatorname{cdn}(G)<p-D+1$ respectively.

Figure 1.2. G
Some interesting results regarding the relation of the connected detour number of a graph G with regard to its order and detour diameter, and also realization results when the detour diameter of G is at least 4 are proved in [5].

Throughout this paper G denotes a connected graph with at least two vertices.
2. Graphs with Detour Diameter $D \leq 4$ and Connected Detour Numbers $p, p-1, p-2$ OR 2
In view of Theorem 1.1, we proceed to characterize graphs G with detour diameter $D \leq 4$ for which $\operatorname{cdn}(G)=p$ or $c d n(G)=p-1$ or $c d n(G)=p-2$ or $\operatorname{cdn}(G)=2$.

First we characterize graphs G with detour diameter $D \leq 4$ for which $\operatorname{cdn}(G)=p$. For this purpose we introduce the graph G given in Figure 2.1

Figure 2.1. G

Theorem 2.1. Let G be a connected graph of order $p \geq 2$ with detour diameter $D \leq 4$. Then $c d n(G)=p$ if and only if G is a tree with $D \leq 4$ or the graph G given in Figure 2.1.
Proof. If G is a tree, then by Theorem 1.5, $c d n(G)=p$. If G is the graph as given in Figure 2.1, then by Theorem 1.4, $c d n(G)=p$.

For the converse, let G be a connected graph with detour diameter $D \leq 4$ and $\operatorname{cdn}(G)=p$. If G is a tree, then by Theorem $1.5, c d n(G)=p$ and so it is enough to prove the result when G is not a tree. Assume that G is not a tree. Suppose $\mathbf{D}=\mathbf{2}$. Let $c(G)$ denote the length of a longest cycle in G. Since G is connected and $D=2$, it follows that $c(G)=3$ and G has exactly three vertices. Hence $G=K_{3}$ and by Theorem $1.9, \operatorname{cdn}(G)=2=p-1$. Thus, in this case there are no graphs satisfying the requirements of the theorem.
Suppose $\mathbf{D}=\mathbf{3}$. Let $c(G)$ denote the length of a longest cycle in G. Since G is connected and $D=3$, it follows that $c(G) \leq 4$. We consider two cases.
Case 1: Let $c(G)=4$. Then, since G is connected and $D=3$, it is clear that G has exactly four vertices. Then the graph G reduces to $C_{4}, K_{4}-e$ or K_{4}. By Theorem 1.9, $c d n\left(C_{4}\right)=c d n\left(K_{4}\right)=2=p-2$. Also, if $G=K_{4}-e$, then $c d n\left(K_{4}-e\right)=2=p-2$. Thus in this case there are no graphs satisfying the requirements of the theorem.
Case 2: Let $c(G)=3$. If G contains two or more triangles, then $c(G)=4$ or $D \geq 4$, which is a contradiction. Hence G contains a unique triangle $C_{3}: v_{1}, v_{2}, v_{3}, v_{1}$. Now, if there are two or more vertices of C_{3} having degree 3 or more, then $D \geq 4$, which is contradiction. Thus exactly one vertex in C_{3} has degree 3 or more. Since $D=3$ and G is connected, it follows that $G=K_{1, p-1}+e$ and so by Theorem 1.6, $c d n\left(K_{1, p-1}+e\right)=1+p-3+1=p-1$. Thus, in this case also there are no graphs satisfying the requirements of the theorem.
Suppose $\mathbf{D}=4$. Let $c(G)$ denote the length of a longest cycle in G. Since G is connected and $D=4$, it follows that $c(G) \leq 5$. We consider three cases. Case 1: Let $c(G)=5$. Then since $D=4$, it is clear that G has exactly five vertices and each of the graph is Hamiltonian and so by Theorem 1.7, $c d n\left(G_{i}\right)=2=p-3$. Thus in this case there are no graphs satisfying the requirements of the theorem.
Case 2: Let $c(G)=4$. Suppose that G contains K_{4} as an induced subgraph. Since $p \geq 5, D=4$ and $c(G)=4$, every vertex not on K_{4} is pendent and adjacent to exactly one vertex of K_{4}. Thus the graph reduces to the graph G given in Figure 2.2. Now, by Theorem 1.6, $c d n(G)=1+(p-4)+1=p-2$. So, in this case also there are no graphs satisfying the requirements of the theorem.

Now, suppose that G does not contain K_{4} as an induced subgraph. We claim that G contains exactly one 4 -cycle C_{4}. Suppose that G contains two or more 4 -cycles. If two 4 -cycles in G have no edges in common, then it is

Figure 2.2. G
clear that $D \geq 5$, which is a contradiction. If two 4 -cycles in G have exactly one edge in common, then G must contain the graphs given in Figure 2.3 as subgraphs or induced subgraphs. In any case $D \geq 5$ or $c(G) \geq 5$, which is a contradiction.

Figure 2.3. G
If two 4 -cycles in G have exactly two edges in common, then G must contain the graphs given in Figure 2.4 as subgraphs. It is easily verified that all other subgraphs having two edges in common will have cycles of length ≥ 5 so that $D \geq 5$, which is a contradiction.

Figure 2.4.
Now, if $G=H_{1}$, then $\left\{v_{1}, v_{2}\right\}$ is a connected detour basis and so $c d n(G)=$ $2=p-3$. Hence $G \neq H_{1}$. Next, assume that G contains H_{1} as a proper
subgraph. Then there is a vertex x such that $x \notin V\left(H_{1}\right)$ and x is adjacent to at least one vertex of H_{1}. If x is adjacent to v_{1}, then there is a path $x, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ of length 5 so that $D \geq 5$, which is a contradiction. Hence x cannot be adjacent to v_{1}. Similarly x cannot be adjacent to v_{3} and v_{5}. Thus x is adjacent to v_{2} or v_{4} or both. If x is adjacent only to v_{2}, then x must be a pendant vertex of G, for otherwise, there is a path of length 5 so that $D \geq 5$, which is a contradiction. Thus in this case, the graph G reduces to the one given in Figure 2.5.

Figure 2.5. G
But, for this graph G, it follows from Theorem 1.3 that the set $S=\left\{v_{1}, v_{2}, v_{6}, v_{7}\right.$, $\left.\ldots, v_{p}\right\}$ is a connected detour basis so that $c d n(G)=p-3$. So, in this case also there are no graphs satisfying the requirements of the theorem. If x is adjacent only to v_{4}, then we get a graph G isomorphic to the one given in Figure 2.5 and hence in this case also there are no graphs satisfying the requirements of the theorem. If x is adjacent to both v_{2} and v_{4}, then the graph reduces to the one given in Figure 2.6.

Figure 2.6. G
However for this graph, $\left\{v_{1}, v_{2}\right\}$ is a connected detour basis so that $\operatorname{cdn}(G)=2$ and hence $\operatorname{cdn}(G) \leq p-4$, which is a contradiction. Thus a vertex not in H_{1} cannot be adjacent to both v_{2} and v_{4}.

Next, if a vertex x not on H_{1} is adjacent only to v_{2} and a vertex y not on H_{1} is adjacent only to v_{4}, then x and y must be pendant vertices of G, for otherwise, we get either a path or a cycle of length ≥ 5 so that $D \geq 5$, which is a contradiction. Thus in this case, the graph reduces to the one given in Figure 2.7.

Figure 2.7. G

But, for this graph G, it follows from Theorem 1.3 that the set of all endvertices together with the cut-vertices v_{2} and v_{4} and the vertex v_{1} is a connected detour basis so that $c d n(G)=p-2$. So, in this case also there are no graphs satisfying the requirements of the theorem. Thus we conclude that in this case there are no graphs G with H_{1} as proper subgraph.

Next, if $G=H_{2}$, then $\left\{v_{2}, v_{4}\right\}$ is a connected detour basis and so $c d n(G)=$ $2=p-3$. Hence $G \neq H_{2}$. Now, assume that G contains H_{2} as a proper subgraph. Then there is a vertex x such that $x \notin V\left(H_{2}\right)$ and x is adjacent to at least one vertex of H_{2}. If x is adjacent to v_{1}, we get a path $x, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ of length 5 so that $D \geq 5$, which is a contradiction. Hence x cannot be adjacent to v_{1}. Similarly x cannot be adjacent to v_{3} and v_{5}. Thus x is adjacent to v_{2} or v_{4} or both. If x is adjacent only to v_{2}, then x must be a pendant vertex of G, for otherwise, we get a path of length 5 so that $D \geq 5$, which is a contradiction. Thus in this case, the graph G reduces to the one given in Figure 2.8. But, for this graph G, it follows from Theorem 1.3 that the set $S=\left\{v_{4}, v_{2}, v_{6}, v_{7}, \ldots, v_{p}\right\}$ is a connected detour basis so that $\operatorname{cdn}(G)=p-3$. So, in this case there are no graphs satisfying the requirements of the theorem. If x is adjacent only to v_{4}, then we get a graph G isomorphic to the one given in Figure 2.8 and hence in this case also there are no graphs satisfying the requirements of the theorem. If x is adjacent to both v_{2} and v_{4}, then the graph reduces to the one given in Figure 2.9.

Figure 2.8. G

Figure 2.9. G
However for this graph, $\left\{v_{2}, v_{4}\right\}$ is a connected detour basis so that $\operatorname{cdn}(G)=2$ and hence $\operatorname{cdn}(G) \leq p-4$, which is a contradiction. Thus a vertex not in H_{2} cannot be adjacent to both v_{2} and v_{4}.

Next, if a vertex x not on H_{2} is adjacent only to v_{2} and a vertex y not on H_{2} is adjacent only to v_{4}, then x and y must be pendant vertices of G, for otherwise, we get either a path or a cycle of length ≥ 5 so that $D \geq 5$, which is a contradiction. Thus in this case, the graph reduces to the one given in Figure 2.10. But, for this graph G, it follows from Theorem 1.3 that the set of all end-vertices together with the cut-vertices is a connected detour basis so that $\operatorname{cdn}(G)=p-3$. So, in this case also there are no graphs satisfying the requirements of the theorem. Thus we conclude that in this case also there are no graphs G with H_{2} as proper subgraph. Hence we conclude that, if G does not contain K_{4} as an induced subgraph, then G has a unique 4 -cycle. Now we consider two subcases.
Subcase 1: The unique cycle $C_{4}: v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ contains exactly one chord $v_{2} v_{4}$. Since $p \geq 5, D=4$ and G is connected, any vertex x not on C_{4} is pendant and is adjacent to at least one vertex of C_{4}. The vertex x cannot be adjacent to both v_{1} and v_{3}, for in this case we get $c(G)=5$, which is a contradiction. Suppose that x is adjacent to v_{1} or v_{3}, say v_{1}. Also if y is a

Figure 2.10. G
vertex such that $y \neq x, v_{1}, v_{2}, v_{3}, v_{4}$, then y cannot be adjacent to v_{2} or v_{3} or v_{4}, for in each case $D \geq 5$, which is a contradiction. Hence y is a pendant vertex and cannot be adjacent to x or v_{2} or v_{3} or v_{4} so that in this case the graph G reduces to the one given in Figure 2.11.

Figure 2.11. G
But, for this graph G, it follows from Theorem 1.3 that the set of all endvertices together with the cut-vertex v_{1} and the vertex v_{2} forms a connected detour basis so that $\operatorname{cdn}(G)=p-2$. Similarly, if x is adjacent to v_{3}, then we get a contradiction.

Now, if x is adjacent to both v_{2} and v_{4}, then we get the graph H_{2} given in Figure 2.4 as a subgraph, where $x=v_{5}$. Then as in the first part of case 2, we see that there are no graphs which satisfy the requirements of the theorem.

Thus x is adjacent to exactly one of v_{2} or v_{4}, say v_{2}. Also if y is a vertex such that $y \neq x, v_{1}, v_{2}, v_{3}, v_{4}$, then y cannot be adjacent to x or v_{1} or v_{3}, for in each case $D \geq 5$, which is a contradiction. If y is adjacent to v_{2} and v_{4}, then we get the graph H given in Figure 2.12 as a subgraph. Then exactly as
in the first part of case 2 it can be seen that there are no graphs satisfying the requirements of the theorem.

Figure 2.12. H
Thus y must be adjacent to v_{2} or v_{4} only. Hence we conclude that in either case the graph G must reduce to the graph G_{1} or G_{2} given in Figure 2.13. Similarly, if x is adjacent to v_{4}, then the graph G reduces to the graph G_{1} or G_{2} given in Figure 2.13.

Figure 2.13.
It follows from Theorem 1.3 that $c d n\left(G_{1}\right)=c d n\left(G_{2}\right)=p-2$. Thus in this case there are no graphs satisfying the requirements of the theorem.

Subcase 2: The unique cycle $C_{4}: v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ has no chord. In this case we claim that G contains no triangle. Suppose that G contains a triangle C_{3}. If C_{3} has no vertex in common with C_{4} or exactly one vertex in common with C_{4}, we get a path of length at least 5 so that $D \geq 5$. If C_{3} has exactly two vertices in common with C_{4}, we get a cycle of length 5 . Thus, in all cases, we have a contradiction and hence it follows that G contains a unique chordless cycle C_{4} with no triangles. Since $p \geq 5, D=4, c(G)=4$ and G is connected, any vertex x not on C_{4} is pendant and is adjacent to exactly one vertex of C_{4}, say v_{1}. Also if y is a vertex such that $y \neq x, v_{1}, v_{2}, v_{3}, v_{4}$, then y cannot be adjacent to v_{2} or v_{4}, for in this case $D \geq 5$, which is a contradiction. Thus y must be adjacent to v_{3} only. Hence we conclude that in either case G must reduce to the graphs H_{1} or H_{2} as given in Figure 2.14.

Figure 2.14.
But, for these graphs H_{1} and H_{2} in Figure 2.14, it follows from Theorem 1.3 that $c d n\left(H_{1}\right)=p-2$ and $\operatorname{cdn}\left(H_{2}\right)=p-1$. Hence in this case also there are no graphs satisfying the requirements of the theorem. Thus, when $D=4$ and $c(G)=4$, there are no graphs satisfying the requirements of the theorem.
Case 3: Let $c(G)=3$. First we prove that the graph contains at most two triangles. If G contains more than two triangles, since $D=4$, it is clear that all the triangles must have a vertex v in common. Now, if two triangles have two vertices in common then it is clear that $c(G) \geq 4$. Hence all triangles must have exactly one vertex in common. Since $D=4$, all the vertices of all the triangles are of degree 2 except v. Thus the graph reduces to the graphs given in Figure 2.15.

Now, it follows from Theorems 1.2 and 1.3 that the set S consisting of all the end-vertices, all the cut- vertices and exactly one vertex other than v from each of the triangles is a connected detour set of G so that $c d n\left(H_{i}\right)=|S|(i=1,2)$. Since G contains more than two triangles it follows that $|S| \leq p-3$ and so $c d n\left(H_{i}\right) \leq p-3(i=1,2)$, which is a contradiction to the assumption that

Figure 2.15.
$\operatorname{cdn}(G)=p$. Thus the graph G contains at most two triangles. Now we consider two cases.
Case 3a: Suppose that G contains exactly one triangle $C_{3}: v_{1}, v_{2}, v_{3}, v_{1}$. Since $p \geq 5$, there are vertices not on C_{3}. If all the vertices of C_{3} have degree three or more, then since $D=4$, the graph G must reduce to the graph G given in Figure 2.1. Now, by Theorem 1.4, $\operatorname{cdn}(G)=p$ and so G is the only graph in this case satisfying the requirements of the theorem. Now, suppose that at most two vertices of C_{3} have degree ≥ 3. We consider two subcases.
Subcase 1: Exactly two vertices of C_{3} have degree 3 or more. Let $d e g_{G}$ $v_{3}=2$. Now, since $p \geq 5, D=4, c(G)=3$ and G is connected, we see that the graph reduces to the graph G_{4} given in Figure 2.18 and it follows from Theorem 1.3 that $\operatorname{cdn}\left(G_{4}\right)=p-1$ and so in this subcase there are no graphs satisfying the requirements of the theorem.
Subcase 2: Exactly one vertex v_{1} of C_{3} has degree 3 or more. Since G is connected, $p \geq 5, D=4$ and $c(G)=3$, the graph reduces to the one given in Figure 2.16.

Figure 2.16. G

Now, it follows from Theorems 1.2 and 1.3 that the set of all the end-vertices together with the cut-vertices and the vertex v_{2} is a connected detour basis so that $\operatorname{cdn}(G)=p-1$. So in this subcase also there are no graphs satisfying the requirements of the theorem. Thus we conclude that the graph G given in Figure 2.1 is the only graph in this case satisfying the requirements of the theorem.
Case 3b: Suppose that G contains exactly two triangles. Since G is connected, $p \geq 5, c(G)=3$ and $D=4$, the two triangles do not have two vertices in common and the graph G reduces to G_{1}, G_{2} or G_{3} as given in Figure 2.17.

Figure 2.17. G

Now, if G is one of these $G_{i}(i=1,2,3)$, then it follows from Theorems 1.2 and 1.3 that the set S of all the all end-vertices together with the cut-vertices and the vertices v_{2} and v_{4} is a connected detour basis of G so that $\operatorname{cdn}(G)=$ $p-2$. Thus in this case also there are no graphs satisfying the requirements of the theorem. Hence, we conclude that the graph G given in Figure 2.1 is the only graph in this case satisfying the requirements of the theorem. This completes proof of the theorem.

In view of Theorem 2.1, we leave the following problem as an open question.
Problem 2.2. Characterize connected graphs G with detour diameter $D \geq 5$ for which $\operatorname{cdn}(G)=p$.

Next we characterize graphs G with detour diameter $D \leq 4$ for which $\operatorname{cdn}(G)=p-1$.

For this purpose we introduce the collection \mathscr{L} of graphs given in Figure 2.18.

Figure 2.18. Graphs in family \mathscr{L}

Theorem 2.3. Let G be a connected graph of order $p \geq 3$ with detour diameter $D \leq 4$. Then $\operatorname{cdn}(G)=p-1$ if and only if $G \in \mathscr{L}$ as given in Figure 2.18.

Proof. It is straightforword to verify that $\operatorname{cdn}\left(G_{i}\right)=p-1(1 \leq i \leq 5)$ for all the graphs $G_{i} \in \mathscr{L}$ given in Figure 2.18, using Theorems 1.2, 1.3, 1.6 and 1.9.

For the converse, let G be a graph of order $p \geq 3, D \leq 4$ and $\operatorname{cdn}(G)=p-1$. Then by an argument as in Theorem 2.1 it is seen that the graph reduces to the graphs $G_{i} \in \mathscr{L}(1 \leq i \leq 5)$ as given in Figure 2.18 This completes the proof of the theorem.

In view of Theorem 2.3, we leave the following problem as an open question.
Problem 2.4. Characterize connected graphs G with detour diameter $D \geq 5$ for which $\operatorname{cdn}(G)=p-1$.

Next we characterize graphs G with detour diameter $D \leq 4$ for which $\operatorname{cdn}(G)=p-2$.

For this purpose we introduce the collection \mathscr{F} of graphs given in Figure 2.19.

Figure 2.19. Graphs in family \mathscr{F}

Theorem 2.5. Let G be a connected graph of order $p \geq 4$ with detour diameter $D \leq 4$. Then $\operatorname{cdn}(G)=p-2$ if and only if $G \in \mathscr{F}$ given in Figure 2.19.

Proof. It is straightforword to verify that $c d n\left(G_{i}\right)=p-2(1 \leq i \leq 12)$ for all the graphs $G_{i} \in \mathscr{F}$ given in Figure 2.19, using Theorems 1.2, 1.3, 1.6 and 1.9.

For the converse, let G be a graph of order $p \geq 4, D \leq 4$ and $\operatorname{cdn}(G)=p-2$. Then, by an argument as in Theorem 2.1, it is seen that the graph reduces to the graphs $G_{i} \in \mathscr{F}(1 \leq i \leq 12)$ as given in Figure 2.19. This completes the proof of the theorem.

In view of Theorem 2.5, we leave the following problem as an open question.
Problem 2.6. Characterize connected graphs G with detour diameter $D \geq 5$ for which $\operatorname{cdn}(G)=p-2$.

In the following we characterize graphs G with detour diameter $D \leq 4$ for which $\operatorname{cdn}(G)=2$. For this purpose we introduce the collection \mathscr{R} of graphs given in Figure 2.20.

G_{1}

G_{2}

G_{3}

Figure 2.20. Graphs in family \mathscr{R}

Theorem 2.7. Let G be a connected graph of order $p \geq 2$ with detour diameter $D \leq 4$. Then $c d n(G)=2$ if and only if $G \in \mathscr{R}$ given in Figure 2.20.
Proof. It is straightforword to verify that $\operatorname{cdn}\left(G_{i}\right)=2 \quad(1 \leq i \leq 17)$ for all the graphs $G_{i} \in \mathscr{R}$ given in Figure 2.20, using Theorems 1.5, 1.7 and 1.9

For the converse, let G be a graph of order $p \geq 2, D \leq 4$ and $c d n(G)=2$. Then by an argument as in Theorem 2.1 it is seen that the graph reduces to the graphs $G_{i} \in \mathscr{R}(1 \leq i \leq 17)$ as given in Figure 2.20. This completes the proof of the theorem.

In view of Theorem 2.7, we leave the following problem as an open question.
Problem 2.8. Characterize connected graphs G with detour diameter $D \geq 5$ for which $\operatorname{cdn}(G)=2$.

A connected detour set S in a connected graph G is called a minimal connected detour set of G if no proper subset of S is a connected detour set of G. The upper connected detour number $c d n^{+}(G)$ of G is the maximum cardinality of a minimal connected detour set of G. It is clear that $c d n(G) \leq c d n^{+}(G)$ for any connected graph G and it is proved in [5] that for every pair a, b of integers with $5 \leq a \leq b$, there exists a connected graph G with $c d n(G)=a$ and $c d n^{+}(G)=b$.

In the rest of the paper, we introduce the forcing connected detour number of a graph G, determine its properties and prove a realization result with regard to the connected detour number and the forcing connected detour number of a graph G.

3. Forcing Subsets in Connected Detour Sets

Definition 3.1. Let G be a connected graph and S a connected detour basis of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique connected detour basis containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing connected detour number of
S, denoted by $f c d n(S)$, is the cardinality of a minimum forcing subset for S. The forcing connected detour number of G, denoted by $f c d n(G)$, is $f c d n(G)$ $=\min \{\operatorname{fcdn}(S)\}$, where the minimum is taken over all connected detour bases S in G.

The following theorem is an easy consequence of the definitions of the connected detour number and the forcing connected detour number of a connected graph G.

Theorem 3.2. For every connected graph $G, 0 \leq f c d n(G) \leq \operatorname{cdn}(G)$.
Example 3.3. For the graph G given in Figure 3.1, $S_{1}=\{u, s, w, t, v\}$ is the unique connected detour basis of G so that $f c d n(G)=0$ and for the graph G given in Figure 1.1, $S_{2}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $S_{3}=\left\{v_{1}, v_{2}, v_{5}\right\}$ are the only connected detour bases of G so that $\operatorname{cdn}(G)=3$ and $f \operatorname{cdn}(G)=1$.

Figure 3.1. G
The following theorem gives the forcing number of certain graphs G.
Theorem 3.4. a) If G is the complete graph $K_{p}(p \geq 3)$ or the the cycle C_{p} or the complete bipartite graph $K_{m, n}(m, n \geq 2)$, then $\operatorname{cdn}(G)=f c d n(G)=2$. b) If G is a tree of order $p \geq 2$, then $~ c d n(G)=p$ and $f c d n(G)=0$.

Proof. a) By Theorem 1.8, a set S of vertices is a connected detour basis of G if and only if S consists of two adjacent vertices of G. For each vertex v in G there are at least two vertices adjacent with v. Thus the vertex v belongs to more than one connected detour basis of G. Hence it follows that no set consisting of a single vertex is a forcing subset for any connected detour basis of G. Thus the result follows.
b) By Theorem 1.5, $\operatorname{cdn}(G)=p$. Thus the set of all vertices of a tree is the unique connected detour basis so that $f c d n(G)=0$.

In view of Theorem 3.2, the following theorem gives a realization result.
Theorem 3.5. For each pair a, b of integers with $0 \leq a<b$ and $b \geq 3$, there is a connected graph G with $f \operatorname{cdn}(G)=a$ and $\operatorname{cdn}(G)=b$.

Proof. Case 1: $a=0$. For each $b \geq 3$, let G be a tree with b vertices. Then $f c d n(G)=0$ and $\operatorname{cdn}(G)=b$ by Theorem 3.4(b).
Case 2: $a \geq 1$. For each integer i with $1 \leq i \leq a$, let F_{i} be a copy of the complete graph K_{2}, where $V\left(F_{i}\right)=\left\{u_{i}, v_{i}\right\}$ and let $H=K_{1, b-a-1}$ be the
star whose vertex set is $W=\left\{z_{1}, z_{2}, \ldots, z_{b-a-1}, v\right\}$. Then the graph G is obtained by joining the central vertex v of H to the vertices of $F_{1}, F_{2}, \ldots, F_{a}$. The graph G is connected and is shown in Figure 3.2. Then by Theorem 1.6, $c d n(G)=b$.

Now, we show that $f d n(G)=a$. It is clear that W is the set all connected detour vertices of G. Let U be any connected detour basis of G. Then $\operatorname{cdn}(G)=|U|, W \subseteq U$ and U is the unique connected detour basis containing $U-W$. Hence $f c d n(G) \leq|U-W|=|U|-|W|=c d n(G)-|W|=$ $b-(b-a)=a$. Now, since $c d n(G)=b$, it follows from Theorem 1.2 that any connected detour basis of G is of the form $S=W \cup\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$, where $x_{i} \in\left\{u_{i}, v_{i}\right\}(1 \leq i \leq a)$. Let T be a subset of S with $|T|<a$. Then there is a vertex $x_{j}(1 \leq j \leq a)$ such that $x_{j} \notin T$. Let y_{j} be a vertex of F_{j} distinct from x_{j}. Then $S^{\prime}=\left(S-\left\{x_{j}\right\}\right) \cup\left\{y_{j}\right\}$ is also a connected detour basis such that it contains T. Thus S is not the unique connected detour basis containing T and so T is not a forcing set of S. Since this is true for all connected detour bases of G, it follows that $f c d n(G) \geq a$ and so $f c d n(G)=a$.

Figure 3.2. G

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Reading MA, 1990.
[2] G. Chartrand, H. Escuadro and P. Zang, Detour Distance in Graphs, J.Combin. Math. Combin. Comput., 53 (2005), 75-94.
[3] G. Chartrand, L. Johns, and P. Zang, Detour Number of a Graph, Util. Math. 64 (2003), 97-113.
[4] G. Chartrand and P. Zang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi, 2006.
[5] A. P. Santhakumaran and S. Athisayanathan, The Connected Detour Number of a Graph, J.Combin. Math. Combin. Comput., to appear.

[^0]: ${ }^{1}$ Research Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai, India. Email: apskumar1953@yahoo.co.in.
 ${ }^{2}$ Research Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai, India. Email: athisayanathan@yahoo.co.in.

