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ON THE CONNECTED DETOUR NUMBER OF A GRAPH

A. P. SANTHAKUMARAN1, S. ATHISAYANATHAN2

Abstract. For two vertices u and v in a graph G = (V, E), the detour

distance D(u, v) is the length of a longest u–v path in G. A u–v path
of length D(u, v) is called a u–v detour. A set S ⊆ V is called a detour

set of G if every vertex in G lies on a detour joining a pair of vertices of
S. The detour number dn(G) of G is the minimum order of its detour
sets and any detour set of order dn(G) is a detour basis of G. A set
S ⊆ V is called a connected detour set of G if S is detour set of G and the
subgraph G[S] induced by S is connected. The connected detour number

cdn(G) of G is the minimum order of its connected detour sets and any
connected detour set of order cdn(G) is called a connected detour basis

of G. Graphs G with detour diameter D ≤ 4 are characterized when
cdn(G) = p, cdn(G) = p−1, cdn(G) = p−2 or cdn(G) = 2. A subset T of
a connected detour basis S of G is a forcing subset for S if S is the unique
connected detour basis containing T . The forcing connected detour number

fcdn(S) of S is the minimum cardinality of a forcing subset for S. The
forcing connected detour number fcdn(G) of G is min{fcdn(S)}, where
the minimum is taken over all connected detour bases S in G. The forcing
connected detour numbers of certain classes of graphs are determined. It
is also shown that for each pair a, b of integers with 0 ≤ a < b and b ≥ 3,
there is a connected graph G with fcdn(G) = a and cdn(G) = b.

Key words: detour, connected detour set, connected detour basis, con-
nected detour number, forcing connected detour number.
AMS SUBJECT: 05C12.

1. Introduction

By a graph G = (V,E), we mean a finite undirected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively.
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We consider connected graphs with at least two vertices. For basic definitions
and terminologies, we refer to [1, 4].

For vertices u and v in a connected graph G, the detour distance D(u, v)
is the length of a longest u–v path in G. A u–v path of length D(u, v) is
called a u–v detour. It is known that the detour distance is a metric on the
vertex set V . The detour eccentricity eD(v) of a vertex v in G is the maximum
detour distance from v to a vertex of G. The detour radius, radDG of G is
the minimum detour eccentricity among the vertices of G, while the detour

diameter, diamDG of G is the maximum detour eccentricity among the vertices
of G. These concepts were studied by Chartrand et al. [2].

A vertex x is said to lie on a u–v detour P if x is a vertex of P including
the vertices u and v. A set S ⊆ V is called a detour set if every vertex v in G
lies on a detour joining a pair of vertices of S. The detour number dn(G) of
G is the minimum order of a detour set and any detour set of order dn(G) is
called a detour basis of G. A vertex v that belongs to every detour basis of G
is a detour vertex in G. If G has a unique detour basis S, then every vertex
in S is a detour vertex in G. These concepts were studied by Chartrand et
al. [3].

The concepts of connected detour number and upper connected detour num-
ber were introduced and studied by Santhakumaran and Athisayanathan in
[5]. A set S ⊆ V is called a connected detour set of G if S is a detour set
of G and the subgraph G[S] induced by S is connected. The connected de-

tour number cdn(G) of G is the minimum order of its connected detour sets
and any connected detour set of order cdn(G) is called a connected detour

basis of G. A vertex v in a graph G is a connected detour vertex if v belongs
to every connected detour basis of G. If G has a unique connected detour
basis S, then every vertex in S is a connected detour vertex of G. These
concepts have interesting applications in the Channel Assignment Problem in
radio technologies.

For the graph G given in Figure 1.1, the sets S1= {v1, v3}, S2= {v1, v5}
and S3= {v1, v4} are the three detour bases of G so that dn(G) = 2. It is
clear that no two element subset of V is a connected detour set of G. However
the set S4 = {v1, v2, v3} is a connected detour basis of G so that cdn(G) = 3.
Also the set S5 = {v1, v2, v5} is another connected detour basis of G. Thus
there can be more than one connected detour basis for a graph G.

The following theorems are used in the sequel.

Theorem 1.1. [5] For any graph G of order p ≥ 2, 2 ≤ dn(G) ≤ cdn(G) ≤ p.

Theorem 1.2. [5] Let G be a connected graph with cut-vertices and S a con-

nected detour set of G. Then for any cut-vertex v of G, every component of

G − v contains an element of S.
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Figure 1.1. G

Theorem 1.3. [5] All the end-vertices and the cut-vertices of a connected

graph G belong to every connected detour set of G.

Theorem 1.4. [5] If G is a graph of order p ≥ 2 such that every vertex v of

G is either an end-vertex or a cut-vertex, then cdn(G) = p.

Theorem 1.5. [5] If T is a tree of order p ≥ 2, then cdn(T ) = p.

Theorem 1.6. [5] Let G = (Kn
1
∪Kn

2
∪ ...∪Knr

∪ kK1)+ v be a block graph

of order p ≥ 4 such that r ≥ 1, each ni ≥ 2 and n1 +n2 + . . .+nr + k = p− 1.
Then cdn(G) = r + k + 1.

Theorem 1.7. [5] Let G be a Hamilton graph of order p ≥ 3. Then cdn(G) =
2.

Theorem 1.8. [5] Let G be the complete graph Kp (p ≥ 2) or the cycle Cp or

the complete bipartite graph Km,n (m,n ≥ 2). Then a set S of vertices is a

connected detour basis if and only if S consists of two adjacent vertices of G.

Theorem 1.9. [5] If G is the complete graph Kp (p ≥ 2) or the cycle Cp or

the complete bipartite graph Km,n (m,n ≥ 2), then cdn(G) = 2.

Chartrand et al. [3] proved the following theorem, which gives an upper
bound for the detour number of a graph in terms of its order and detour
diameter D.

Theorem 1.10. [3] If G is a nontrivial connected graph of order p and detour

diameter D, then dn(G) ≤ p − D + 1.

Theorem 1.10 does not hold in the case of connected detour number cdn(G)
of a graph G. Santhakumaran and Athisayanathan [5] showed the existence
of graphs G for which cdn(G) = p−D + 1, cdn(G) > p−D + 1 and cdn(G) <
p−D+1. For the graph G in Figure 1.2(a), p = 8, D = 4 and by Theorem 1.6,
cdn(G) = 5 so that cdn(G) = p − D + 1. It also follows similarly from
Theorem 1.6 that for the graphs G in Figure 1.2(b) and Figure 1.2(c), cdn(G) >
p − D + 1 and cdn(G) < p − D + 1 respectively.
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Figure 1.2. G

Some interesting results regarding the relation of the connected detour num-
ber of a graph G with regard to its order and detour diameter, and also re-
alization results when the detour diameter of G is at least 4 are proved in
[5].

Throughout this paper G denotes a connected graph with at least two ver-
tices.

2. Graphs with Detour Diameter D ≤ 4 and Connected Detour

Numbers p, p − 1, p − 2 or 2

In view of Theorem 1.1, we proceed to characterize graphs G with detour
diameter D ≤ 4 for which cdn(G) = p or cdn(G) = p− 1 or cdn(G) = p− 2 or
cdn(G) = 2.

First we characterize graphs G with detour diameter D ≤ 4 for which
cdn(G) = p. For this purpose we introduce the graph G given in Figure 2.1
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Theorem 2.1. Let G be a connected graph of order p ≥ 2 with detour diameter

D ≤ 4. Then cdn(G) = p if and only if G is a tree with D ≤ 4 or the graph G
given in Figure 2.1.

Proof. If G is a tree, then by Theorem 1.5, cdn(G) = p. If G is the graph as
given in Figure 2.1, then by Theorem 1.4, cdn(G) = p.

For the converse, let G be a connected graph with detour diameter D ≤ 4
and cdn(G) = p. If G is a tree, then by Theorem 1.5, cdn(G) = p and so it is
enough to prove the result when G is not a tree. Assume that G is not a tree.
Suppose D = 2. Let c(G) denote the length of a longest cycle in G. Since
G is connected and D = 2, it follows that c(G) = 3 and G has exactly three
vertices. Hence G = K3 and by Theorem 1.9, cdn(G) = 2 = p − 1. Thus, in
this case there are no graphs satisfying the requirements of the theorem.
Suppose D = 3. Let c(G) denote the length of a longest cycle in G. Since
G is connected and D = 3, it follows that c(G) ≤ 4. We consider two cases.
Case 1: Let c(G) = 4. Then, since G is connected and D = 3, it is clear that
G has exactly four vertices. Then the graph G reduces to C4, K4 − e or K4.
By Theorem 1.9, cdn(C4) = cdn(K4) = 2 = p − 2. Also, if G = K4 − e, then
cdn(K4 − e) = 2 = p − 2. Thus in this case there are no graphs satisfying the
requirements of the theorem.
Case 2: Let c(G) = 3. If G contains two or more triangles, then c(G) = 4
or D ≥ 4, which is a contradiction. Hence G contains a unique triangle
C3 : v1, v2, v3, v1. Now, if there are two or more vertices of C3 having degree
3 or more, then D ≥ 4, which is contradiction. Thus exactly one vertex in
C3 has degree 3 or more. Since D = 3 and G is connected, it follows that
G = K1,p−1 +e and so by Theorem 1.6, cdn(K1,p−1 +e) = 1+p−3+1 = p−1.
Thus, in this case also there are no graphs satisfying the requirements of the
theorem.
Suppose D = 4. Let c(G) denote the length of a longest cycle in G. Since
G is connected and D = 4, it follows that c(G) ≤ 5. We consider three cases.
Case 1: Let c(G) = 5. Then since D = 4, it is clear that G has exactly
five vertices and each of the graph is Hamiltonian and so by Theorem 1.7,
cdn(Gi) = 2 = p − 3. Thus in this case there are no graphs satisfying the
requirements of the theorem.
Case 2: Let c(G) = 4. Suppose that G contains K4 as an induced subgraph.
Since p ≥ 5, D = 4 and c(G) = 4, every vertex not on K4 is pendent and
adjacent to exactly one vertex of K4. Thus the graph reduces to the graph G
given in Figure 2.2. Now, by Theorem 1.6, cdn(G) = 1 + (p − 4) + 1 = p − 2.
So, in this case also there are no graphs satisfying the requirements of the
theorem.

Now, suppose that G does not contain K4 as an induced subgraph. We
claim that G contains exactly one 4-cycle C4. Suppose that G contains two
or more 4-cycles. If two 4-cycles in G have no edges in common, then it is
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clear that D ≥ 5, which is a contradiction. If two 4-cycles in G have exactly
one edge in common, then G must contain the graphs given in Figure 2.3 as
subgraphs or induced subgraphs. In any case D ≥ 5 or c(G) ≥ 5, which is a
contradiction.
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Figure 2.3. G

If two 4-cycles in G have exactly two edges in common, then G must contain
the graphs given in Figure 2.4 as subgraphs. It is easily verified that all other
subgraphs having two edges in common will have cycles of length ≥ 5 so that
D ≥ 5, which is a contradiction.
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Now, if G = H1, then {v1, v2} is a connected detour basis and so cdn(G) =
2 = p − 3. Hence G 6= H1. Next, assume that G contains H1 as a proper
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subgraph. Then there is a vertex x such that x /∈ V (H1) and x is adjacent
to at least one vertex of H1. If x is adjacent to v1, then there is a path
x, v1, v2, v3, v4, v5 of length 5 so that D ≥ 5, which is a contradiction. Hence x
cannot be adjacent to v1. Similarly x cannot be adjacent to v3 and v5. Thus
x is adjacent to v2 or v4 or both. If x is adjacent only to v2, then x must be a
pendant vertex of G, for otherwise, there is a path of length 5 so that D ≥ 5,
which is a contradiction. Thus in this case, the graph G reduces to the one
given in Figure 2.5.
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Figure 2.5. G

But, for this graph G, it follows from Theorem 1.3 that the set S = {v1, v2, v6, v7,
. . . , vp} is a connected detour basis so that cdn(G) = p−3. So, in this case also
there are no graphs satisfying the requirements of the theorem. If x is adjacent
only to v4, then we get a graph G isomorphic to the one given in Figure 2.5
and hence in this case also there are no graphs satisfying the requirements of
the theorem. If x is adjacent to both v2 and v4, then the graph reduces to the
one given in Figure 2.6.
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Figure 2.6. G

However for this graph, {v1, v2} is a connected detour basis so that cdn(G) = 2
and hence cdn(G) ≤ p − 4, which is a contradiction. Thus a vertex not in H1

cannot be adjacent to both v2 and v4.
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Next, if a vertex x not on H1 is adjacent only to v2 and a vertex y not on
H1 is adjacent only to v4, then x and y must be pendant vertices of G, for
otherwise, we get either a path or a cycle of length ≥ 5 so that D ≥ 5, which
is a contradiction. Thus in this case, the graph reduces to the one given in
Figure 2.7.
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Figure 2.7. G

But, for this graph G, it follows from Theorem 1.3 that the set of all end-
vertices together with the cut-vertices v2 and v4 and the vertex v1 is a con-
nected detour basis so that cdn(G) = p − 2. So, in this case also there are no
graphs satisfying the requirements of the theorem. Thus we conclude that in
this case there are no graphs G with H1 as proper subgraph.

Next, if G = H2, then {v2, v4} is a connected detour basis and so cdn(G) =
2 = p − 3. Hence G 6= H2. Now, assume that G contains H2 as a proper
subgraph. Then there is a vertex x such that x /∈ V (H2) and x is adjacent to
at least one vertex of H2. If x is adjacent to v1, we get a path x, v1, v2, v3, v4, v5

of length 5 so that D ≥ 5, which is a contradiction. Hence x cannot be adjacent
to v1. Similarly x cannot be adjacent to v3 and v5. Thus x is adjacent to v2

or v4 or both. If x is adjacent only to v2, then x must be a pendant vertex
of G, for otherwise, we get a path of length 5 so that D ≥ 5, which is a
contradiction. Thus in this case, the graph G reduces to the one given in
Figure 2.8. But, for this graph G, it follows from Theorem 1.3 that the set
S = {v4, v2, v6, v7, . . . , vp} is a connected detour basis so that cdn(G) = p− 3.
So, in this case there are no graphs satisfying the requirements of the theorem.
If x is adjacent only to v4, then we get a graph G isomorphic to the one given
in Figure 2.8 and hence in this case also there are no graphs satisfying the
requirements of the theorem. If x is adjacent to both v2 and v4, then the
graph reduces to the one given in Figure 2.9.
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However for this graph, {v2, v4} is a connected detour basis so that cdn(G) = 2
and hence cdn(G) ≤ p − 4, which is a contradiction. Thus a vertex not in H2

cannot be adjacent to both v2 and v4.
Next, if a vertex x not on H2 is adjacent only to v2 and a vertex y not on

H2 is adjacent only to v4, then x and y must be pendant vertices of G, for
otherwise, we get either a path or a cycle of length ≥ 5 so that D ≥ 5, which
is a contradiction. Thus in this case, the graph reduces to the one given in
Figure 2.10. But, for this graph G, it follows from Theorem 1.3 that the set
of all end-vertices together with the cut-vertices is a connected detour basis
so that cdn(G) = p−3. So, in this case also there are no graphs satisfying the
requirements of the theorem. Thus we conclude that in this case also there are
no graphs G with H2 as proper subgraph. Hence we conclude that, if G does
not contain K4 as an induced subgraph, then G has a unique 4-cycle. Now we
consider two subcases.
Subcase 1: The unique cycle C4 : v1, v2, v3, v4, v1 contains exactly one chord
v2v4. Since p ≥ 5, D = 4 and G is connected, any vertex x not on C4 is
pendant and is adjacent to at least one vertex of C4. The vertex x cannot
be adjacent to both v1 and v3, for in this case we get c(G) = 5, which is a
contradiction. Suppose that x is adjacent to v1 or v3, say v1. Also if y is a
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Figure 2.10. G

vertex such that y 6= x, v1, v2, v3, v4, then y cannot be adjacent to v2 or v3 or
v4, for in each case D ≥ 5, which is a contradiction. Hence y is a pendant
vertex and cannot be adjacent to x or v2 or v3 or v4 so that in this case the
graph G reduces to the one given in Figure 2.11.
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But, for this graph G, it follows from Theorem 1.3 that the set of all end-
vertices together with the cut-vertex v1 and the vertex v2 forms a connected
detour basis so that cdn(G) = p − 2. Similarly, if x is adjacent to v3, then we
get a contradiction.

Now, if x is adjacent to both v2 and v4, then we get the graph H2 given in
Figure 2.4 as a subgraph, where x = v5. Then as in the first part of case 2, we
see that there are no graphs which satisfy the requirements of the theorem.

Thus x is adjacent to exactly one of v2 or v4, say v2. Also if y is a vertex
such that y 6= x, v1, v2, v3, v4, then y cannot be adjacent to x or v1 or v3, for
in each case D ≥ 5, which is a contradiction. If y is adjacent to v2 and v4,
then we get the graph H given in Figure 2.12 as a subgraph. Then exactly as
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in the first part of case 2 it can be seen that there are no graphs satisfying the
requirements of the theorem.
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Thus y must be adjacent to v2 or v4 only. Hence we conclude that in either
case the graph G must reduce to the graph G1 or G2 given in Figure 2.13.
Similarly, if x is adjacent to v4, then the graph G reduces to the graph G1 or
G2 given in Figure 2.13.
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It follows from Theorem 1.3 that cdn(G1) = cdn(G2) = p − 2. Thus in this
case there are no graphs satisfying the requirements of the theorem.
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Subcase 2: The unique cycle C4 : v1, v2, v3, v4, v1 has no chord. In this case
we claim that G contains no triangle. Suppose that G contains a triangle C3.
If C3 has no vertex in common with C4 or exactly one vertex in common with
C4, we get a path of length at least 5 so that D ≥ 5. If C3 has exactly two
vertices in common with C4, we get a cycle of length 5. Thus, in all cases, we
have a contradiction and hence it follows that G contains a unique chordless
cycle C4 with no triangles. Since p ≥ 5,D = 4, c(G) = 4 and G is connected,
any vertex x not on C4 is pendant and is adjacent to exactly one vertex of C4,
say v1. Also if y is a vertex such that y 6= x, v1, v2, v3, v4, then y cannot be
adjacent to v2 or v4, for in this case D ≥ 5, which is a contradiction. Thus y
must be adjacent to v3 only. Hence we conclude that in either case G must
reduce to the graphs H1 or H2 as given in Figure 2.14.

b b

bb

b
v1 v2

v3v4

b

b

b

b

b

b

b

b
b

H1

b b

bb

b
v1 v2

v3v4

b

b

b

b

b

b

b

b
b

b

b

b
b

b

b
b

b

b

H2

Figure 2.14.

But, for these graphs H1 and H2 in Figure 2.14, it follows from Theorem 1.3
that cdn(H1) = p − 2 and cdn(H2) = p − 1. Hence in this case also there are
no graphs satisfying the requirements of the theorem. Thus, when D = 4 and
c(G) = 4, there are no graphs satisfying the requirements of the theorem.
Case 3: Let c(G) = 3. First we prove that the graph contains at most two
triangles. If G contains more than two triangles, since D = 4, it is clear that
all the triangles must have a vertex v in common. Now, if two triangles have
two vertices in common then it is clear that c(G) ≥ 4. Hence all triangles
must have exactly one vertex in common. Since D = 4, all the vertices of all
the triangles are of degree 2 except v. Thus the graph reduces to the graphs
given in Figure 2.15.

Now, it follows from Theorems 1.2 and 1.3 that the set S consisting of all the
end-vertices, all the cut- vertices and exactly one vertex other than v from each
of the triangles is a connected detour set of G so that cdn(Hi) = |S| (i = 1, 2).
Since G contains more than two triangles it follows that |S| ≤ p − 3 and so
cdn(Hi) ≤ p − 3 (i = 1, 2), which is a contradiction to the assumption that
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Figure 2.15.

cdn(G) = p. Thus the graph G contains at most two triangles. Now we
consider two cases.
Case 3a: Suppose that G contains exactly one triangle C3 : v1, v2, v3, v1.
Since p ≥ 5, there are vertices not on C3. If all the vertices of C3 have degree
three or more, then since D = 4, the graph G must reduce to the graph G
given in Figure 2.1. Now, by Theorem 1.4, cdn(G) = p and so G is the only
graph in this case satisfying the requirements of the theorem. Now, suppose
that at most two vertices of C3 have degree ≥ 3. We consider two subcases.
Subcase 1: Exactly two vertices of C3 have degree 3 or more. Let deg

G

v3 = 2. Now, since p ≥ 5, D = 4, c(G) = 3 and G is connected, we see that
the graph reduces to the graph G4 given in Figure 2.18 and it follows from
Theorem 1.3 that cdn(G4) = p − 1 and so in this subcase there are no graphs
satisfying the requirements of the theorem.
Subcase 2: Exactly one vertex v1 of C3 has degree 3 or more. Since G is
connected, p ≥ 5, D = 4 and c(G) = 3, the graph reduces to the one given in
Figure 2.16.
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Now, it follows from Theorems 1.2 and 1.3 that the set of all the end-vertices
together with the cut-vertices and the vertex v2 is a connected detour basis
so that cdn(G) = p− 1. So in this subcase also there are no graphs satisfying
the requirements of the theorem. Thus we conclude that the graph G given
in Figure 2.1 is the only graph in this case satisfying the requirements of the
theorem.
Case 3b: Suppose that G contains exactly two triangles. Since G is connected,
p ≥ 5, c(G) = 3 and D = 4, the two triangles do not have two vertices in
common and the graph G reduces to G1, G2 or G3 as given in Figure 2.17.

b

b

b

b

b

b

b

v1

v2

v3

v4

v5

G1

b

b

b

b

b

b

b

b

b

b

b

v1

v2

v3

v4

v5

b b

b

G2

b

b

b

b

b

b

b
v1

v2

v3 v4

v5

b

b

b b

b
b

b

b

b
b

b

bb
b

b
b

b

b

b
b

b b b

b

b

b

b

bb
b b

b

b

b

b

b

b b
b

G3

Figure 2.17. G

Now, if G is one of these Gi (i = 1, 2, 3), then it follows from Theorems 1.2
and 1.3 that the set S of all the all end-vertices together with the cut-vertices
and the vertices v2 and v4 is a connected detour basis of G so that cdn(G) =
p − 2. Thus in this case also there are no graphs satisfying the requirements
of the theorem. Hence, we conclude that the graph G given in Figure 2.1 is
the only graph in this case satisfying the requirements of the theorem. This
completes proof of the theorem.

In view of Theorem 2.1, we leave the following problem as an open question.

Problem 2.2. Characterize connected graphs G with detour diameter D ≥ 5
for which cdn(G) = p.

Next we characterize graphs G with detour diameter D ≤ 4 for which
cdn(G) = p − 1.

For this purpose we introduce the collection L of graphs given in Fig-
ure 2.18.
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Figure 2.18. Graphs in family L

Theorem 2.3. Let G be a connected graph of order p ≥ 3 with detour diameter

D ≤ 4. Then cdn(G) = p − 1 if and only if G ∈ L as given in Figure 2.18.

Proof. It is straightforword to verify that cdn(Gi) = p − 1 (1 ≤ i ≤ 5) for all
the graphs Gi ∈ L given in Figure 2.18, using Theorems 1.2, 1.3, 1.6 and 1.9.

For the converse, let G be a graph of order p ≥ 3, D ≤ 4 and cdn(G) = p−1.
Then by an argument as in Theorem 2.1 it is seen that the graph reduces to
the graphs Gi ∈ L (1 ≤ i ≤ 5) as given in Figure 2.18 This completes the
proof of the theorem.

In view of Theorem 2.3, we leave the following problem as an open question.

Problem 2.4. Characterize connected graphs G with detour diameter D ≥ 5
for which cdn(G) = p − 1.

Next we characterize graphs G with detour diameter D ≤ 4 for which
cdn(G) = p − 2.

For this purpose we introduce the collection F of graphs given in Fig-
ure 2.19.
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Figure 2.19. Graphs in family F

Theorem 2.5. Let G be a connected graph of order p ≥ 4 with detour diameter

D ≤ 4 . Then cdn(G) = p − 2 if and only if G ∈ F given in Figure 2.19.

Proof. It is straightforword to verify that cdn(Gi) = p− 2 (1 ≤ i ≤ 12) for all
the graphs Gi ∈ F given in Figure 2.19, using Theorems 1.2, 1.3, 1.6 and 1.9.

For the converse, let G be a graph of order p ≥ 4 , D ≤ 4 and cdn(G) = p−2.
Then, by an argument as in Theorem 2.1, it is seen that the graph reduces to
the graphs Gi ∈ F (1 ≤ i ≤ 12) as given in Figure 2.19. This completes the
proof of the theorem.

In view of Theorem 2.5, we leave the following problem as an open question.

Problem 2.6. Characterize connected graphs G with detour diameter D ≥ 5
for which cdn(G) = p − 2.

In the following we characterize graphs G with detour diameter D ≤ 4 for
which cdn(G) = 2. For this purpose we introduce the collection R of graphs
given in Figure 2.20.
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Figure 2.20. Graphs in family R

Theorem 2.7. Let G be a connected graph of order p ≥ 2 with detour diameter

D ≤ 4. Then cdn(G) = 2 if and only if G ∈ R given in Figure 2.20.

Proof. It is straightforword to verify that cdn(Gi) = 2 (1 ≤ i ≤ 17) for all
the graphs Gi ∈ R given in Figure 2.20, using Theorems 1.5, 1.7 and 1.9

For the converse, let G be a graph of order p ≥ 2, D ≤ 4 and cdn(G) = 2.
Then by an argument as in Theorem 2.1 it is seen that the graph reduces to
the graphs Gi ∈ R (1 ≤ i ≤ 17) as given in Figure 2.20. This completes the
proof of the theorem.

In view of Theorem 2.7, we leave the following problem as an open question.

Problem 2.8. Characterize connected graphs G with detour diameter D ≥ 5
for which cdn(G) = 2.

A connected detour set S in a connected graph G is called a minimal con-

nected detour set of G if no proper subset of S is a connected detour set of G.
The upper connected detour number cdn+(G) of G is the maximum cardinality
of a minimal connected detour set of G. It is clear that cdn(G) ≤ cdn+(G)
for any connected graph G and it is proved in [5] that for every pair a, b of
integers with 5 ≤ a ≤ b, there exists a connected graph G with cdn(G) = a
and cdn+(G) = b.

In the rest of the paper, we introduce the forcing connected detour number
of a graph G, determine its properties and prove a realization result with regard
to the connected detour number and the forcing connected detour number of
a graph G.

3. Forcing Subsets in Connected Detour Sets

Definition 3.1. Let G be a connected graph and S a connected detour basis of

G. A subset T ⊆ S is called a forcing subset for S if S is the unique connected

detour basis containing T . A forcing subset for S of minimum cardinality is

a minimum forcing subset of S. The forcing connected detour number of
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S, denoted by fcdn(S), is the cardinality of a minimum forcing subset for S.

The forcing connected detour number of G, denoted by fcdn(G), is fcdn(G)
= min{fcdn(S)}, where the minimum is taken over all connected detour bases

S in G.

The following theorem is an easy consequence of the definitions of the con-
nected detour number and the forcing connected detour number of a connected
graph G.

Theorem 3.2. For every connected graph G, 0 ≤ fcdn(G) ≤ cdn(G).

Example 3.3. For the graph G given in Figure 3.1, S1 = {u, s, w, t, v} is the

unique connected detour basis of G so that fcdn(G) = 0 and for the graph

G given in Figure 1.1, S2 = {v1, v2, v3} and S3 = {v1, v2, v5} are the only

connected detour bases of G so that cdn(G) = 3 and fcdn(G) = 1.

b b b b

bb

b b b

u s w vt

x y

Figure 3.1. G

The following theorem gives the forcing number of certain graphs G.

Theorem 3.4. a) If G is the complete graph Kp (p ≥ 3) or the the cycle Cp

or the complete bipartite graph Km,n (m,n ≥ 2), then cdn(G) = fcdn(G) = 2.
b) If G is a tree of order p ≥ 2, then cdn(G) = p and fcdn(G) = 0.

Proof. a) By Theorem 1.8, a set S of vertices is a connected detour basis of
G if and only if S consists of two adjacent vertices of G. For each vertex v in
G there are at least two vertices adjacent with v. Thus the vertex v belongs
to more than one connected detour basis of G. Hence it follows that no set
consisting of a single vertex is a forcing subset for any connected detour basis
of G. Thus the result follows.
b) By Theorem 1.5, cdn(G) = p. Thus the set of all vertices of a tree is the
unique connected detour basis so that fcdn(G) = 0.

In view of Theorem 3.2, the following theorem gives a realization result.

Theorem 3.5. For each pair a, b of integers with 0 ≤ a < b and b ≥ 3, there

is a connected graph G with fcdn(G) = a and cdn(G) = b.

Proof. Case 1: a = 0. For each b ≥ 3, let G be a tree with b vertices. Then
fcdn(G) = 0 and cdn(G) = b by Theorem 3.4(b).
Case 2: a ≥ 1. For each integer i with 1 ≤ i ≤ a, let Fi be a copy of
the complete graph K2, where V (Fi) = {ui, vi} and let H = K1,b−a−1 be the
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star whose vertex set is W = {z1, z2, . . . , zb−a−1, v}. Then the graph G is
obtained by joining the central vertex v of H to the vertices of F1, F2, . . . , Fa.
The graph G is connected and is shown in Figure 3.2. Then by Theorem 1.6,
cdn(G) = b.

Now, we show that fdn(G) = a. It is clear that W is the set all con-
nected detour vertices of G. Let U be any connected detour basis of G. Then
cdn(G) = |U |, W ⊆ U and U is the unique connected detour basis contain-
ing U − W . Hence fcdn(G) ≤ |U − W | = |U | − |W | = cdn(G) − |W | =
b − (b − a) = a. Now, since cdn(G) = b, it follows from Theorem 1.2 that any
connected detour basis of G is of the form S = W ∪ {x1, x2, . . . , xa}, where
xi ∈ {ui, vi} (1 ≤ i ≤ a). Let T be a subset of S with |T | < a. Then there is a
vertex xj (1 ≤ j ≤ a) such that xj /∈ T . Let yj be a vertex of Fj distinct from
xj. Then S ′ = (S − {xj}) ∪ {yj} is also a connected detour basis such that
it contains T . Thus S is not the unique connected detour basis containing T
and so T is not a forcing set of S. Since this is true for all connected detour
bases of G, it follows that fcdn(G) ≥ a and so fcdn(G) = a.
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