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WITHDRAWAL AND DRAINAGE OF GENERALIZED

SECOND GRADE FLUID ON VERTICAL CYLINDER WITH

SLIP CONDITIONS

M. FAROOQ1, M. T. RAHIM1, S. ISLAM2, A. M. SIDDIQUI3

Abstract. This paper investigates the steady thin film flows of an in-
compressible Generalized second grade fluid under the influence of non-
isothermal effects. These thin films are considered for two different prob-
lems, namely, withdrawal and drainage problems. The governing conti-
nuity and momentum equations are converted into ordinary differential
equations. These equations are solved analytically. Expressions for the ve-
locity profile, temperature distribution, volume flux, average velocity and
shear stress are obtained in both the cases. Effects of different parameters
on velocity and temperature are presented graphically.
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1. Introduction

In recent years, the world has immense curiosity in the study of non-
Newtonian fluids from both fundamental and practical points of view [1-2,
16-20]. The study of non-Newtonian fluids is very important because of its
applications in several industrial and engineering processes. The familiar ex-
amples of such fluids are paint, shampoo, mud, ketchup, blood, polymer melts,
certain oils and greases, clay coatings and many emulsions. Both theoretically
and practically the flow analysis of such fluids is very vital. Theoretically
speaking, flows of this type are essential in fluid mechanics. From practical
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point of view, these flows have applications in many manufacturing processes
in industry. Non-Newtonian fluids are comprehensively studied by researchers
primarily involving the analysis of the resultant differential equations. In ap-
plied sciences, such as physics or rheology of the atmosphere, approach to fluid
mechanics is in an experimental set up leading to the measurement of material
coefficients. Due to vast variety in the physical structure of non-Newtonian
fluids, it is not easy to propose a single constitutive equation which exhibits
all properties of non-Newtonian fluids. Therefore, a number of fluid models
have been proposed to predict the non-Newtonian behavior of different types
of materials. Amongst these, the Generalized second grade fluid model has
attained special attention [9].
Recently, thin film flows have attracted the attention of various researchers.
This is because of their applications in many manufacturing processes in indus-
try. But no appropriate attention has been given to thin film flows concerning
non-Newtonian fluids even though the literature on such flows is widespread
for Newtonian fluids [3]. Siddiqui et al. [4, 7] and Hayat et al. [14, 15] have
made few attempts dealing with thin film flows of non-Newtonian fluids.
Many researchers have been attracted by the flow and heat transfer inside thin
films [10-12]. This is due to their vast applications in engineering and indus-
try such as food stuff processing, fiber and wire coating, reactor fluidization,
transpiration cooling, polymer processing, gaseous diffusion, heat pipes and
fluidic cells of many biological and chemical detection systems. Lavrik et al.
[13] considered the problem of chambers for chemical and biological detection
systems such as fluidic cells for biological and chemical microcantilever. In ma-
jority of the problems related to flow and heat transfer studies, the power-law
fluid model is taken as the non-Newtonian fluid. Only unpretentious interest
has been devoted to the studies where the effects of viscous dissipation are
incorporated, although its importance has been shown in many cases such as
polymer processing.
In the present manuscript, we discuss thin film flow problems of a Generalized
second grade fluid by using a vertically moving cylinder and again down a
stationary vertical cylinder. In both cases, the approximate analytical solu-
tions of the resulting differential equations are obtained subject to appropriate
boundary conditions. In view of their practical weight, expressions for velocity
profile, volume flux, average velocity and shear stress are also calculated. To
the best of our knowledge these problems have not yet been reported. At the
end graphical results with discussion are given for various physical parameters
appearing in the solution. An important observation which we note is that
Generalized second grade fluid shows the power law model results for steady
case.
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2. Basic Equations

The basic equations governing the flow of an incompressible, non-Newtonian
fluid including thermal effects are:

divV = 0, (1)

ρ
DV

Dt
= ρf − gradp + divτ , (2)

ρCp
DΘ

Dt
= κ∇2Θ + τ · L, (3)

where V is velocity vector,
D

Dt
is material time derivative defined as

D

Dt
(∗) =

(

∂

∂t
+ V · ∇

)

(∗),

ρ is constant density, f is body force, p is dynamic pressure, Θ is temperature,
Cp is specific heat constant, κ is thermal conductivity and τ is extra stress
tensor which is defined differently for different fluids. The extra stress tensor
for Generalized second grade fluid is given by

τ = µeffA1 + α1A2 + α2A
2
1, (4)

where α1 and α2 are normal stress coefficients, µeff is effective viscosity η is
flow consistency index, m is flow behavior index, A1 and A2 are the first and
second order Rivlin Ericksen tensors which are defined as

A1 = L + LT , L = grad V,

A2 =
DA1

Dt
+ A1L + LTA1.

For Generalized second grade fluid, µeff as a function of the shear rate is
defined as

µeff = η

(

1

2
trA2

1

)
m

2

,

It is worthwhile to mention here that for m < 0, fluid is pseudoplastic or shear
thinning, for m > 0 fluid is dilatant or shear thickening and for m = 0 we
obtain second grade fluid model. On the other hand if α1 = α2 = 0, equation
(4) reduces to the power-law model. Furthermore, if m = α1 = α2 = 0 we
obtain the classical Newtonian model. It is important to note that the flow
behavior index m has the limits −1 < m < 1 [8].
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3. Withdrawal Problem

We consider a Generalized second grade fluid falling on the outer surface of
an infinitely long vertical cylinder of radius R which moves vertically upward
with constant speed w0 as shown in figure 1(a). The flow is in the form of a
thin uniform axisymmetric film of thickness δ in contact with stationary air.
Gravity effect is in downward direction. We choose z-axis in the middle of
cylinder and r normal to it. We suppose that motion is steady and there is no
variation with respect to the component θ. Thus velocity field and temperature
distribution are of the form

V = [0, 0, w(r)] and Θ = Θ(r). (5)

Fig. 1: Geometry of the problems

In view of the above profile (5), equation (1) is identically satisfied and
equation (2) gives

r −component of momentum: 0 = −
∂p

∂r
+ (2α1 + α2)

1

r

d

dr

[

r

(

dw

dr

)2
]

,(6)

θ −component of momentum: 0 = −
1

r

∂p

∂θ
, (7)

z −component of momentum:0 = −ρg −
∂p

∂z
+

η

r

d

dr

[

r

(

dw

dr

)m+1
]

. (8)

The velocity profile is obtained from equation (8). If we consider p, the atmo-

spheric pressure (constant), then we can take
∂p

∂z
= 0, therefore equation (8)
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reduces to

1

r

d

dr

[

r

(

dw

dr

)m+1
]

=
ρg

η
, (9)

which is highly non-linear ordinary differential equation. Using profile (5) in
the energy equation (3), we obtain

κ

[

d2Θ

dr2
+

1

r

dΘ

dr

]

+ η

[

dw

dr

]m+2

= 0. (10)

The boundary conditions associated with these differential equations are

Free space boundary condition:

τrz = 0 and
dΘ

dr
= 0 at r = R + δ, (11)

Slip boundary condition:

w = w0 − βτrz |r=R and Θ = Θ0 at r = R, (12)

where

τrz = η

(

dw

dr

)m+1

.

Integrating equation (9) with respect to r and applying the free space boundary
condition (11) we get

dw

dr
= −

(

ρg

2η

)
1

m+1
[

(R + δ)2

r
− r

]

1

m+1

. (13)

Using the Binomial series, equation (13) can also be written as

dw

dr
= −

(

ρg

2η

)
1

m+1

(R + δ)
2

m+1

∞
∑

i=0

(

1
m+1

i

)

(−1)i

(R + δ)2i
r
2i− 1

m+1 . (14)

3.1. Solution of the withdrawal problem.

3.1.1. Generalized second grade fluid (m 6= 0). For m 6= 0, solutions of equa-
tions (14) and (10), when boundary conditions (11) and (12) are applied, are

w = w0 +
βρg

2

(

(R + δ)2

R
− R

)

−

(

ρg

2η

)
1

m+1

(

∞
∑

i=0

(

1
m+1

i

)

(−1)i (R + δ)−2i+ 2

m+1

2i + m
m+1

×
[

r2i+ m

m+1 − R2i+ m

m+1

])

, (15)
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Θ = Θ0 +
η

κ

(

ρg

2η

)
m+2

m+1
∞
∑

i=0

(

m+2
m+1

i

)

(−1)i
(

2i + m
m+1

)

(R + δ)2i−2(m+2

m+1)

×





R
2i+ m

m+1

(

2i + m
m+1

)

{

1 −
( r

R

)2i+ m

m+1

}

+ (R + δ)2i+ m

m+1 ln
( r

R

)



 . (16)

Volume flux, Q, in cylindrical coordinates, is given by

Q =

R+δ
∫

R

2π
∫

0

r w(r) dθ dr. (17)

Using profile (15), equation (17) becomes

Q = πw0

(

(R + δ)2 − R2
)

+ βπ
(ρg

2

)

(

(R + δ)2

R
− R

)

(

(R + δ)2 − R2
)

− 2π

(

ρg

2η

)
1

m+1
∞
∑

i=0

(

1
m+1

i

)

(−1)i(R + δ)−2i+ 2

m+1

2i + m
m+1

×

[

(R + δ)2i+ 3m+2

m+1 − R
2i+ 3m+2

m+1

2i + 3m+2
m+1

−
R

2i+ m

m+1

2

(

(R + δ)2 − R2
)

]

. (18)

The average film velocity, V , is defined as

V̄ =
Q

π [(R + δ)2 − R2]
. (19)

Therefore V̄ for the upward moving cylinder is given by

V̄ = w0 + β
(ρg

2

)

(

(R + δ)2

R
− R

)

− 2

(

ρg

2η

)
1

m+1
∞
∑

i=0

(

1
m+1

i

)

×

(−1)i (R + δ)−2i+ 2

m+1

2i + m
m+1





(

(R + δ)2i+ 3m+2

m+1 − R
2i+ 3m+2

m+1

)

((R + δ)2 − R2)
(

2i + 3m+2
m+1

) −
R

2i+ m

m+1

2



 . (20)

Shear stress on cylinder is

τrz|r=R = −
ρg(R + δ)2

2R

[

1 −

(

R

R + δ

)2
]

. (21)

Introducing the non-dimensional parameters

r∗ =
r

R
, w∗ =

w

w0

, δ∗ =
δ

R
, Θ∗ =

Θ − Θ0

Θ1 − Θ0

, St =
ρgR2

w0 µeff

, Br =
w2

0µeff

κ(Θ1 − Θ0)
,

(22)
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where Θ1 is reference temperature, St is Stokes number and Br is Brinkman
number, equations (15) and (16), after dropping ′ ∗ ′, become

w = 1 +
β η St

2w0

(

(1 + δ)2

R
− R

)

−

(

St

2

)
1

m+1
∞
∑

i=0

(

1
m+1

i

)

×
(−1)i (1 + δ)

2

m+1
−2i

(

2i + m
m+1

)

[

r
2i+ m

m+1 − 1
]

, (23)

Θ = Br

(

St

2

)
m+2

m+1
∞
∑

i=0

(

m+2
m+1

i

)

(−1)i
(

2i + m
m+1

)

(1 + δ)2i

×





1
(

2i + m
m+1

)

{

1 − r
2i+ m

m+1

}

+ (1 + δ)2i+ m

m+1 ln r



 . (24)

which are the dimensionless velocity profile and temperature distribution for
Generalized second grade fluid, respectively.

3.1.2. Newtonian fluid (m = α1 = α2 = 0). Taking m = 0 and using boundary
conditions (11) and (12), solutions of equations (14) and (10) are

w = w0 −
ρg

4η

[

(

R2 − r2
)

+ 2(R + δ)2 ln
( r

R

)

−
2ηβ

R

(

(R + δ)2 − R2
)

]

. (25)

Θ = Θ0 −
η

κ

(

ρg

2η

)2
[

(R + δ)4

2

{(

(ln r)2 − (ln R)2
)

− ln (R + δ) ln
( r

R

)}

+
1

16
(r4 − R4) −

(R + δ)2

2

(

r2 − R2
)

+
3

4
(R + δ)2 ln

( r

R

)

]

. (26)

Volume flux, Q, is calculated from equation (17) by using equation (25), which
is

Q = w0π
(

(R + δ)2 − R2
)

−
ρgπ

8η

[

4(R + δ)4 ln

(

R + δ

R

)

−2(R + δ)2
(

(R + δ)2 − R2
)

−
(

(R + δ)2 − R2
)2
(

2ηβ

R
+ 1

)]

. (27)

The average film velocity, V̄ is then given by

V̄ = w0−
ρgπ

8η

[

4(R + δ)4 ln
(

R+δ
R

)

((R + δ)2 − R2)
− 3(R + δ)2 + R2 −

2ηβ

R

(

(R + δ)2 − R2
)

]

.

(28)
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Shear stress will remain the same as that of the Generalized second grade fluid
given by equation (21).

4. Drainage problem

Here we consider, Generalized second grade fluid now falling on the outer
surface of a stationary infinitely long vertical cylinder of radius R, as shown
in figure 1(b). The flow is in the downward direction due to gravity. The
governing equations (2) and (3) become

1

r

d

dr

[

r

(

dw

dr

)m+1
]

= −
ρg

η
, (29)

κ

[

d2Θ

dr2
+

1

r

dΘ

dr

]

+ η

[

dw

dr

]m+2

= 0, (30)

and the associated boundary conditions are

Free space boundary condition:

τrz = 0 and
dΘ

dr
= 0 at r = R + δ, (31)

Slip boundary condition:

w = −βτrz |r=R and Θ = Θ0 at r = R, (32)

Integrating equation (29) with respect to r, and using the free space boundary
condition (31), we get

dw

dr
=

(

ρg

2η

)
1

m+1

(

(R + δ)2

r
− r

)

1
m+1

. (33)

By using the Binomial series, equation (33) can be re-written as

dw

dr
=

(

ρg

2η

)
1

m+1

(R + δ)
2

m+1

∞
∑

i=0

(

1
m+1

i

)

(−1)i

(R + δ)2i
r
2i− 1

m+1 . (34)

4.1. Solution of the drainage problem.

4.1.1. Generalized second grade fluid (m 6= 0). Solving equations (34) and
(30) for m 6= 0 by using the boundary conditions (31) and (32), we obtain the
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velocity profile and temperature distribution for the Generalized second grade
fluid as

w = −
βρg

2

(

(R + δ)2

R
− R

)

+

(

ρg

2η

)
1

m+1
∞
∑

i=0

(

1
m+1

i

)

×
(−1)i (R + δ)−2i+ 2

m+1

2i + m
m+1

[

r
2i+ m

m+1 − R
2i+ m

m+1

]

, (35)

Θ = Θ0 +
η

κ

(

ρg

2η

)
m+2

m+1
∞
∑

i=0

(

m+2
m+1

i

)

(−1)i
(

2i + m
m+1

)

(R + δ)2i−2(m+2

m+1)

×





R
2i+ m

m+1

(

2i + m
m+1

)

{

1 −
( r

R

)2i+ m

m+1

}

+(R + δ)2i+ m

m+1 ln
( r

R

)



 . (36)

These are the explicit expressions for the velocity field and temperature distri-
bution of thin film of a Generalized second grade fluid down a vertical cylinder
in case of the drainage problem. From solutions (16) and (36) we observe that
the temperature distribution for both withdrawal and drainage problems re-
main the same even though the velocity profile in each case is different. To
calculate volume flux, Q , we use equation (35) in equation (17) to get

Q = −
π βρg

2

(

(R + δ)2

R
− R

)

(

(R + δ)2 − R2
)

× + 2π

(

ρg

2η

)
1

m+1
∞
∑

i=0

(

1
m+1

i

)

(−1)i (R + δ)−2i+ 2

m+1

2i + m
m+1

×





(

(R + δ)2i+ 3m+2

m+1 − R2i+ 3m+2

m+1

)

2i + 3m+2
m+1

−
R2i+ m

m+1

2

(

(R + δ)2 − R2
)



 .(37)

The average film velocity, V , is then obtained from the formula listed in equa-
tion (19) as

V̄ = −
βρg

2

(

(R + δ)2

R
− R

)

+ 2

(

ρg

2η

)
1

m+1
∞
∑

i=0

(

1
m+1

i

)

(−1)i

×
(R + δ)−2i+ 2

m+1

2i + m
m+1





(

(R + δ)2i+ 3m+2

m+1 − R
2i+ 3m+2

m+1

)

((R + δ)2 − R2)
(

2i + 3m+2
m+1

) −
R2i+ m

m+1

2



 .(38)
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Shear stress on the surface of cylinder is

τrz|r=R =
ρg(R + δ)2

2R

[

1 −

(

R

R + δ

)2
]

. (39)

Introducing the dimensionless parameters defined in equation (22), the non-
dimensional velocity profile and temperature distribution for the Generalized
second grade fluid in the case of drainage problem are

w = −
β η St

2w0

(

(1 + δ)2

R
− R

)

+

(

St

2

)
1

m+1
∞
∑

i=0

(

1
m+1

i

)

×
(−1)i (1 + δ)

2

m+1
−2i

(

2i + m
m+1

)

[

r
2i+ m

m+1 − 1
]

(40)

and

Θ = Br

(

St

2

)
m+2

m+1
∞
∑

i=0

(

m+2
m+1

i

)

(−1)i
(

2i + m
m+1

)

(1 + δ)2i

×





1
(

2i + m
m+1

)

{

1 − r2i+ m

m+1

}

+ (1 + δ)2i+ m

m+1 ln r



 (41)

respectively.

4.1.2. Newtonian fluid (m = α1 = α2 = 0). Solving equations (33) and (30)
for m=0 with boundary conditions (31) and (32), we obtain

w =
ρg

4η

[

(

R2 − r2
)

+ 2(R + δ)2 ln
( r

R

)

−
2ηβ

R

(

(R + δ)2 − R2
)

]

, (42)

Θ = Θ0 −
η

κ

(

ρg

2η

)2
[

(R + δ)4

2

{(

(ln r)2 − (ln R)2
)

− ln (R + δ) ln
( r

R

)}

+
1

16
(r4 − R4) −

(R + δ)2

2

(

r2 − R2
)

+
3

4
(R + δ)2 ln

( r

R

)

]

. (43)

Again it is observed that the temperature distribution for Newtonian fluid in
both the withdrawal and drainage problems remain the same. Expressions for
volume flux and average film velocity are

Q =
ρgπ

8η

[

4(R + δ)4 ln

(

R + δ

R

)

− 2(R + δ)2
(

(R + δ)2 − R2
)

−
(

(R + δ)2 − R2
)2
(

2ηβ

R
+ 1

)]

(44)
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and

V̄ =
ρgπ

8η

[

4(R + δ)4 ln
(

R+δ
R

)

((R + δ)2 − R2)
− 3(R + δ)2 + R2 −

2ηβ

R

(

(R + δ)2 − R2
)

]

.

(45)
respectively.
Shear stress for Newtonian fluid is also given by equation (39).

5. Results and discussion

In this paper we studied thin film flows for withdrawal and drainage prob-
lems using a non-isothermal, incompressible Generalized second grade fluid on
cylindrical surfaces. In both problems differential equations and the associated
boundary conditions are developed. The approximate analytical solutions of
both problems are obtained by using the binomial theorem.

Fig. 2: Effect of m on velocity for withdrawal problem 2(a) and drainage
problem 2(b).

Fig. 3: Effect, on dilatant fluid, of Stokes number St on velocity for
withdrawal problem 3(a) and drainage problem 3(b).



62 M. Farooq, M. T. Rahim, S. Islam, A. M. Siddiqui

Fig. 4: Effect, on pseudoplastic fluid, of Stokes number St on velocity for
withdrawal problem 4(a) and drainage problem 4(b).

It is observed that the obtained solutions (23), (24) and (35), (36) are strongly
dependent on the non-dimensional parameters, Stokes number St, Brinkman
number Br, and the flow behavior index m. The effect of flow behavior index
m on velocity profile and temperature distribution for both problems is inves-
tigated in figures 2 and 5. In figures 3 and 6, the effects of St and Br numbers
on velocity field and temperature distribution are depicted for the shear thick-
ening (dilatant) fluids where as figures 4 and 7 are given for the shear thinning
(pseudoplastic) fluids. For withdrawal problem it can be observed in figure
2(a) that magnitude of velocity decreases as the fluid is becoming thicker and
vice versa, while figure 2(b) is given for the drainage problem. For withdrawal
problem, the effect of Stokes number, St, on velocity profile is given in figure
3(a). It is evident that gradient of velocity decreases as St increases, while fig-
ure 3(b) for the drainage problem shows that there is a direct relation between
the Stokes number St and velocity of the fluid w(r). Increase in temperature
can be seen in figure 5 as the fluid is becoming thicker.

Fig. 5: Effect of parameter m on temperature for both problems.
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Fig. 6: Effect, on dilatant fluid, of St and Br numbers on temperature for
both problems.

Fig. 7: Effect, on pseudoplastic fluid, of St and Br numbers on temperature
for both problems.

The effects of St and Br numbers on heat transfer in dilatant fluids for both
withdrawal and drainage problems are shown in figures 6(a) and 6(b) respec-
tively. Raise in the temperature is evident from these figures as the values
of the Stokes and Brinkman numbers are incearsing, while graphs for pseudo-
plastic fluids are given in figures 4 and 7.

6. Conclusion

We have considered steady, incompressible thin film flow for two different
problems i.e., withdrawal and drainage problems for the Generalised second
grade fluid and obtained series solutions. Explicit expressions for velocity field,
temperature distribution, volume flux, average velocity and shear stress are
obtained in both problems. It is important to note that normal stresses have
no contribution for steady Generalized second grade fluid flow. We do not
observe any contribution of power law model verses Generalized second grade
fluid model as solutions (15) and (35) for velocity profiles and also solutions
(16) and (36) for temperature distributions are same as that of the power law
fluid.
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