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ON SOME PARAMETERS RELATED TO FIXING SETS IN

GRAPHS

IMRAN JAVAID 1, MUHAMMAD FAZIL2, USMAN ALI3, MUHAMMAD SALMAN4

Abstract. The fixing number of a graph G is the smallest cardinality of
a set of vertices F ⊆ V (G) such that only the trivial automorphism of G
fixes every vertex in F . In this paper, we introduce and study three new
fixing parameters: fixing share, fixing polynomial and fixing value.
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1. Introduction

Unless otherwise specified, all the graphs G considered in this paper are
simple, non-trivial and connected with vertex set V (G) and edge set E(G).
We write u ∼e v if two vertices u and v form an edge in G and u ̸∼e v if
u and v do not form an edge in G. The subgraph induced by a set S of
vertices of G is denoted by ⟨S⟩. The neighborhood of a vertex v of G is the
set N(v) = {u ∈ V (G) : u ∼e v}. The number of elements in N(v) is the
degree of v, denoted by d(v). The maximum degree of G is denoted by ∆(G).
A vertex v with d(v) = 0 is an isolated vertex. If two distinct vertices u and
v of G have the property that N(u) − {v} = N(v) − {u}, then u and v are
called twin vertices (or simply twins) in G. If for a vertex u of G, there exists
a vertex v ̸= u in G such that u, v are twins in G, then u is said to be a twin
in G. A set T ⊆ V (G) is said to be a twin-set in G if every two elements of
T are twin vertices of G. The complement of G, denoted by G, has the same
vertex set as G and x ∼e y in G if and only if x ̸∼e y in G.

An automorphism of G is a bijective mapping ϕ : V (G) → V (G) such that
(u)ϕ ∼e (v)ϕ if and only if u ∼e v. Thus, each automorphism of G is a
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permutation on the vertex set V (G), which preserves adjacencies and non-
adjacencies. The automorphism group of a graph G, denoted by Γ(G), is the
set of all automorphisms of a graph G. The stabilizer of a vertex v of a graph
G, denoted by Γv(G), is the set {ϕ ∈ Γ(G) : (v)ϕ = v}. The stabilizer of a
subset F ⊆ V (G) is ΓF (G) = {ϕ ∈ Γ(G) : (v)ϕ = v ∀ v ∈ F}. Note that
ΓF (G) =

∩
v∈F

Γv(G). The orbit of a vertex v of a graph G, denoted by O(v),

is the set {u ∈ V (G) : (v)α = u for some α ∈ Γ(G)}. Two vertices u and v
are said to be similar if they belong to the same orbit. The number d(u, v)
denotes the distance between two vertices u and v of G, which is the number of
edges in a shortest u−v path in G. We note a well established fact that every
automorphism is also an isometry, that is, for any ψ ∈ Γ(G) and u, v ∈ V (G),
d(u, v) = d((u)ψ, (v)ψ) [4].

A vertex v of a graph G is said to be fixed by a group element ϕ ∈ Γ(G) if
ϕ ∈ Γv(G). A subset F ⊆ V (G) is called a fixing set of G if ΓF (G) is trivial.
In this case, we say that F fixes G. The fixing number of G, fix(G), is the
minimum cardinality of a fixing set of G [8]. Each graph has a fixing set.
Trivially, the set of vertices of G itself is a fixing set. It is also clear that any
set containing all but one vertex is a fixing set. In [10], it was shown that the
only connected graph with fix(G) = n − 1 is the complete graph on n ≥ 2
vertices. Also, it has been noted that fix(Kn) = n − 1. On the other hand,
a graph G has fix(G) = 0 if and only if Γ(G) is trivial. Thus, for a graph G
on n ≥ 1 vertices, 0 ≤ fix(G) ≤ n− 1 [3]. Unless otherwise specified, all the
graphs considered in this paper have non-trivial automorphisms group.

The fixing number of a graph G was first defined by Erwin and Harary in
2006 [8]. Boutin introduced the concept of determining set and defined it as
follows: A subset D of the vertices in a graph G is called a determining set if
whenever g, h ∈ Γ(G) with the property that (u)g = (u)h for all u ∈ D, then
(v)g = (v)h for all v ∈ V (G) [5]. The minimum cardinality of a determining
set is called the determining number. In [10], it was shown that fixing set and
determining set are equivalent. A considerable literature has been developed
in this field (see [2, 3, 6, 8, 12]). The concept of the fixing number originates
from the idea of breaking symmetries in graphs which have applications in the
problem of programming a robot to manipulate objects [13].

A finite sequence of real numbers (x0, x1, . . . , xn) is said to be unimodal if
there is some k ∈ {0, 1, . . . , n}, called the mode of the sequence, such that
x0 ≤ x1 ≤ . . . ≤ xk−1 ≤ xk ≥ xk+1 ≥ . . . ≥ xn−1 ≥ xn. The mode is unique
if xk−1 < xk > xk+1. A polynomial is called unimodal if the sequence of its
coefficients is unimodal.

The rest of the paper is organized as follows: In section 2, we quantify the
participation of each vertex v of a graph G to fix any pair of vertices of G
in order to break the symmetry of the graph, and we call this quantity the
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fixing share of v. We also investigate some useful results related to fixing
share in this section. In section 3, a new graph polynomial, called the fixing
polynomial, as well as a new fixing parameter, called the fixing value, are
defined and studied. Some basic properties and useful results related to these
newly defined parameters are also derived in this section. Moreover, fixing
polynomials and fixing values in some well-known families of graphs such as
cycles, complete multipartite graphs and lexicographic product of cycle with
m isolated vertices are found. Also, we discuss the unimodality of the fixing
polynomial of cycles.

2. Fixing Share

In this section, we define the concept of fixing share and investigate some
basic results. We begin with the following useful preliminaries: Let G be
a connected graph. A vertex v of G is said to be fixed if (v)ψ = v for all
ψ ∈ Γ(G), that is, Γv(G) = Γ(G). A vertex v of G is said to be locally fixed by
an automorphism ϕ of G if ϕ ∈ Γv(G) and Γv(G) ̸= Γ(G). In order to avoid
confusion of terms fixed and locally fixed, we shall use the term ‘globally fixed’
instead of just ‘fixed’. For instance, in the graph G1 of Figure 1, the vertex v2
is locally fixed by the automorphism (v5 v6), whereas the vertex v3 is globally
fixed.

v5

v4

v6

v2

v1

v3

Figure 1. The graph G1

From the definitions of globally fixed and locally fixed vertex, we have the
following remark:

Remark 1. (1) For a locally fixed vertex u and for a globally fixed vertex v of
a graph G, there is no automorphism ψ of G such that (u)ψ = v or (v)ψ = u.
(2) If v is a globally fixed vertex and u is a locally fixed vertex in a graph G,
then O(v) = {v} and |O(u)| ≥ 2.

Let Vs(G) = {(u, v) : u, v ∈ V (G) and u, v are distinct similar vertices}.
A vertex v of G is said to locally fix a pair (x, y) ∈ Vs(G), if (x)ψ ̸= y and
(y)ψ ̸= x, for all ψ ∈ Γv(G). We shall say that locally fixing v destroys all
the automorphisms in which x is mapped onto y and y is mapped onto x. For
instance, in the graph G1, v6 does not locally fix the pair (v1, v2), because
there is an automorphism ψ = (v1 v2) in Γv6(G1) such that (v1)ψ = v2 and
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(v2)ψ = v1. However, the vertex v6 locally fixes the pair (v5, v6) because there
is no automorphism ϕ in Γv6(G1) such that (v5)ϕ = v6 and (v6)ϕ = v5.

For a pair (u, v) of distinct vertices of G, the fixing neighborhood of (u, v)
is denoted by F (u, v) and is defined as: F (u, v) = {x ∈ V (G) : (u)ψ ̸=
v ∧ (v)ψ ̸= u, ∀ ψ ∈ Γx(G)}. From this definition, we observe that, the fixing
neighborhood of (u, v) ∈ Vs(G) contains both the vertices u and v.
From the definition of F (u, v) and Remark 1, we have the following remark:

Remark 2. If v is a globally fixed vertex of G, then F (v, u) = V (G) for all
u ∈ V (G)− {v}. Moreover, v ̸∈ F (x, y) for any distinct x, y ∈ V (G).

Definition 1. (Fixing share) Let G be a connected graph. For any pair (u, v)
of distinct vertices of G and for any w ∈ V (G), the quantity

fw(u, v) =

{
0 when w ̸∈ F (u, v),
1

|F (u,v)| when w ∈ F (u, v),

is called the fixing share of w for the pair (u, v).

For example, in the graph G1 of Figure 1, F (v1, v2) = {v1, v2}, and thus

fw(v1, v2) =

{
1
2 when w ∈ F (v1, v2),
0 otherwise.

From the definition of fixing share, we observe that, fu(u, v) ̸= 0 ̸= fv(u, v)
for every two locally fixed vertices u and v.

In view of Remarks 1 and 2, from now onwards, each pair of vertices of a
graph G considered for computing its fixing share is from the set Vs(G) ⊆ Vp,
where Vp denotes the collection of all

(
n
2

)
pairs of the vertices of G.

Properties 1. (1) The fixing neighborhood of a pair (u, v) ∈ Vs(G) is the class
of all those vertices of G whose fixing share for the pair (u, v) is the same.
(2) For w ∈ V (G) and (u, v) ∈ Vs(G), 0 ≤ fw(u, v) ≤ 1

2 . The sharpness of the
upper bound in this inequality follows if and only if u and v are twin vertices
and w ∈ {u, v}.
(3) A twin in G is a locally fixed vertex. Because, for a twin x in G, there
exists a vertex y ̸= x in G such that x and y are twin vertices, and hence
there is an automorphism ψ = (x y) of G with the property that (x)ψ = y and
(y)ψ = x, and can be destroyed only by fixing either x or y.
(4) Let J = {v1, v2, . . . , vk} ⊆ V (G), (k ≥ 2). If for every two elements
u, v ∈ J , fw(u, v) =

1
2 , then at least k − 1 elements of J must belong to any

fixing set F for G.
(5) For a pair (u, v) ∈ Vs(G), if fw(u, v) =

1
|G| , then there is no globally fixed

vertex in G. Since if there is a globally fixed vertex x in G, then F (u, v) ̸=
V (G) because for a globally fixed vertex x, Γx(G) = Γ(G) which implies that
fw(u, v) ̸= 1

|G| , a contradiction.
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(6) For two distinct locally fixed vertices u and v of a graph G, F (u, v) = {u, v}
if and only if there is an automorphism of G which is a transposition (u v) on
V (G) and can be destroyed by fixing u and v only.
(7) For any two distinct locally fixed vertices u and v of a graph G, (u v) is a
transposition if u and v are twins.

Let Di denotes the class of all the vertices of a connected graph G having
degree i for 1 ≤ i ≤ ∆(G), and is called the degree class in G. A degree
class may be empty. Note that, all the non-empty degree classes in G form
a partition of V (G), called the degree partition of V (G). Thus, we have the
following straightforward lemma:

Lemma 1. Let G be a connected graph and {Ui ; 1 ≤ i ≤ ∆(G)} be the
degree partition of V (G). Then for u ∈ Ui and v ∈ Uj ̸=i, fw(u, v) ̸= 0 for all
w ∈ V (G).

Theorem 2. Let G be a connected graph of order n ≥ 2. Let J be the set of
p ≥ 1 globally fixed vertices of G and {Ui ; 1 ≤ i ≤ k} (k ≤ ∆(G)) be the
degree partition of V (G). Let Si = Ui − J for 1 ≤ i ≤ k. Then the number of
pairs (u, v) in Vp for which fw(u, v) ̸= 0 for all w ∈ V (G) is bounded below by

p

2
(2n− p− 1) +

k−1∑
i=1

k∑
j=i+1

|Si||Sj |.

Moreover, this bound is sharp.

Proof. Since there are p ≥ 1 globally fixed vertices in G, so we have
(
p
2

)
+

p(n − p) pairs (u, v) in Vp − Vs(G) for which fw(u, v) ̸= 0 for all w ∈ V (G).
Further, since for each u ∈ Si and v ∈ Sj ̸=i, d(u) ̸= d(v), so Lemma 1 yields
that there are at least

k−1∑
i=1

k∑
j=i+1

|Si||Sj |

pairs (u, v) in Vs(G) for which fw(u, v) ̸= 0 for all w ∈ V (G). It completes the
proof of first part.

For sharpness, consider a complete graph Kt (t ≥ 2) and a star graph
K1,r (r ≥ 2) with center, say c . Make a graph G of order n = t + r + 1 by
joining the vertex c of K1,r by any edge with a vertex, say v, of Kt. One can
see that for the pairs (c, x) and (v, y) with x ∈ (V (Kt) ∪ V (K1,r) − {c}) and
y ∈ (V (Kt) ∪ V (K1,r) − {c, v}), fw(c, x) = fw(v, y) ̸= 0 for all w ∈ V (G),
and there are 2(r + t) − 1 such pairs in Vp. Also, for each pair (x, y) with
x ∈ V (Kt) − {v} and y ∈ V (K1,r) − {c}, fw(x, y) ̸= 0 for all w ∈ V (G), and
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there are r(t− 1) such pairs in Vp. Therefore, there are exactly

r(t+ 1) + 2t− 1 =
p

2
(2n− p− 1) +

k−1∑
i=1

k∑
j=i+1

|Si||Sj |

pairs (u, v) in Vp for which fw(u, v) ̸= 0 for all w ∈ V (G). Because, in
this graph G, J = {c, v} and we have four classes in the degree partition of
V (G), namely U1 = D1 with |U1| = r, U2 = Dr+1 = {c} with |U2| = 1,
U3 = Dt = {v} with |U3| = 1, and U4 = Dt−1 with |U4| = t − 1. Note that
S1 = U1, S4 = U4 and S2 = S3 = ∅. �

3. Fixing polynomials and Fixing values

One of the most general approaches to graph polynomials was proposed by
Farrell [9] in his theory of F-polynomials of a graph. According to Farrell,
any such polynomial corresponds to a strictly prescribed family of connected
subgraphs of the respective graph. For the domination polynomial of G [1],
this family corresponds to all the dominating sets of G; for the chromatic
polynomial of G [7], this family corresponds to all the color classes of G; for
the matching polynomial of a graph G [9], this family corresponds to all the
edges of G; for the independence polynomial of G [11], this family corresponds
to all the stable (independent) sets of G; for the resolving polynomial of G
[14], this family corresponds to all the resolving sets of G.

In this section, we introduce the fixing polynomial of G, this family includes
all the fixing sets of G. In fact, various aspects of combinatorial information
concerning a graph is stored in the coefficients of a specific graph polynomial.

For a graph G of order n with fixing number fix(G), the fixing polynomial
fix(G, x) is a generating polynomial for the fixing sequence (ffix(G), ffix(G)+1,
. . . , fn) which helps in counting all the fixing sets of cardinality i; fix(G) ≤
i ≤ n, for G. The fixing polynomial of a graph is a good representative of the
fixing structure of the graph. This polynomial is defined as follows: Let G be
a graph. An i-set is a subset of V (G) of cardinality i. Let F(G, i) denotes the
family of all the fixing sets of G which are i-sets and let fi = |F(G, i)|. Then
the fixing polynomial of G, denoted by fix(G, x), is defined as

fix(G, x) =

n∑
i=fix(G)

fix
i,

where fix(G) is the fixing number of G. It is worth mentioning that fi = 0 if
and only if i = fix(G) = 0 or i < fix(G).

Example 1. Let G be the co-eiffeltower graph. Then fix(G) = 1, because
O(v3) = |Γ(G)| [8]. The fixing sequence for G is (4, 18, 34, 35, 21, 7, 1) and due
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Figure 2. co-eiffeltower graph

to this sequence, we have the fixing polynomial of G as x7+7x6+21x5+35x4+
34x3 + 18x2 + 4x.

In a polynomial P (x) = anx
n+an−1x

n−1+ . . .+a1x+a0, the coefficient an
is called the leading coefficient of P (x). If an = 1, then the polynomial P (x)
is called monic. Followings are some properties of fixing polynomial fix(G, x)
of a graph G of order n.

Properties 2. (1) Since the only fixing set of cardinality n is the set V (G)
and a fixing set for G of cardinality n− 1 can be chosen in n possible different
ways, so fn = 1 and fn−1 = n.
(2) By (1), it follows that fix(G, x) is monic.
(3) Since fi = 0 for i = fix(G) = 0 or i < fix(G), so fix(G, x) has no
constant term.
(4) Since there exists at least one fixing set of cardinality fix(G) ̸= 0 and by
(1), fn = 1. So, each term of the fixing sequence (ffix(G), ffix(G)+1, . . . , fn) is
non-zero.
(5) For any a, b ∈ [0,∞) such that a < b, fix(G, a) < fix(G, b). It concludes
that fix(G, x) is strictly increasing function on [0,∞).
(6) If H is any subgraph of G, then deg(fix(G, x)) ≥ deg(fix(H,x)).

It is easy to see that if a graph G has n components G1, G2, . . . , Gn, then a
fixing set for a graph G can be obtained by taking the union of fixing sets for
G1, G2, . . . , Gn. Thus, fix(G) = fix(G1)+fix(G2)+. . .+fix(Gn). Therefore,
we have the following remark:

Remark 3. (1) If G is a graph with n components G1, G2, . . . , Gn, then the

fixing polynomial of G is fix(G, x) =
n∏

i=1
fix(Gi, x).

(2) If G is the union of n ≥ 2 isolated vertices, then fix(G, x) = xn + nxn−1.
(3) If G is a graph with r ≥ 2 isolated vertices and H be a graph induced by
the set V (G)− Y , where Y is the set of r isolated vertices, then fix(H,x) =
fix(G,x)
xr+rxr−1 .
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The number of isolated vertices in a graph G can be obtained if the fixing
polynomials of G and its subgraph H are known, as we show in the following
lemma.

Lemma 3. Let G be a graph of order n ≥ 4 with r ≥ 2 isolated vertices and
H be its subgraph induced by the set V (G)−Y , where Y is the set of r isolated

vertices. If fix(G, x) =
n∑

i=fix(G)

fix
i and fix(H,x) =

n−r∑
j=fix(H)

fjx
j are the

fixing polynomials of G and H, respectively, then r =
ffix(G)

ffix(H)
.

Proof. Let K be a graph induced by Y , then fix(K,x) = xr + rxr−1. Since

H is a graph induced by V (G) − Y , so fix(H,x) =
m∑

i=fix(H)

fix
i, where m =

|V (G) − Y |. Since G is a graph consisting of two components K and H, so
fix(G, x) = fix(K,x)fix(H,x). This implies that

n∑
i=fix(G)

fix
i =

(
xr + rxr−1

) m∑
i=fix(H)

fix
i

 .

It follows that

ffix(G)x
fix(G) +

m+r∑
i=fix(G)+1

fix
i = rffix(H)x

fix(H)+r−1 + . . .+ fm+rx
m+r.

Since fix(G) = fix(H) + fix(K) = fix(H) + r− 1. Therefore, by comparing

the coefficients of xfix(G) and xfix(H)+r−1, we have the required result. �

In a graph G, we call a fixing set of G of cardinality fix(G), the fix-set of
G, and we denote the total number of the fix-sets of G by T (G). It follows
from the definition of fixing polynomial that T (G) = ffix(G) = |F(G, fix(G))|.
Now, we define the fixing value of each vertex of G as follows: For each vertex
v ∈ V (G), the fixing value of v, denoted by FVG(v), is the number of fix-sets
of G for which v belongs. We simply write FV (v) instead of FVG(v) if G is
clear from the context. Since, the fixing number of the graph G of Figure 2 is
1, so T (G) = f1 = 4. This implies that FV (v3) = 1.

The following straightforward assertions hold in the context of fixing value.

Proposition 4. Let G be a graph, then
(1)

∑
v∈V (G)

FV (v) = T (G)fix(G).

(2) If u and v are similar vertices in G, then FV (v) = FV (u).
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(3) If G has n ≥ 2 components G1, G2, . . . , Gn, then T (G) =
n∏

i=1
T (Gi). Fur-

thermore, for v ∈ V (G), FV (v) = FVGi(v)
n∏

j=1
j ̸=i

T (Gj).

According to the definition of twin vertices and twin-set, we have the fol-
lowings:

Proposition 5. Suppose that u, v are twins in a connected graph G and F is
a fixing set of G. Then either u or v is in F . Moreover, if u ∈ F and v ̸∈ F ,
then (F − {u}) ∪ {v} is a fixing set of G.

Proposition 6. For each pair (u, v) of twin vertices of a graph G |F (u, v)| = 2
and F (u, v) = {u, v}.

Remark 4. Let T be a twin-set of order m ≥ 2 in a connected graph G. Then
every fixing set F of G contains at least m− 1 vertices of T .

Proposition 7. For each pair (u, v) ∈ Vp, we have

T (G) ≤
∑

v0∈F (u,v)

FV (v0) ≤ T (G)fix(G).

Proof. The upper bound follows from the Proposition 4(1). For the lower
bound, note that any fixing set F of G must contain a vertex from the fixing
neighborhood F (u, v), otherwise it is not a fixing set of G. �

3.1. Fixing polynomials and fixing values in some well-known fam-
ilies of graphs. In this section, we consider cycles, complete multipartite
graphs and lexicographic product of cycles with m isolated vertices in the
context of fixing polynomial and fixing value. Also, we discuss the unimodal-
ity of the fixing polynomial of cycles.

Two vertices u and v in a connected graph G are said to be antipodal if
d(u, v) = diam(G). Otherwise, u and v are non-antipodal.

Theorem 8. Let G be a cycle Cn with n ≥ 3. Then

fix(G, x) =


1
2n(n− 2)x2 +

n∑
i=3

(
n
i

)
xi if n is even,

n∑
i=2

(
n
i

)
xi if n is odd.

Further, this polynomial is unimodal. Moreover, for each vertex v of G,

FV (v) =

{
n− 1 if n is odd,
n− 2 if n is even.
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Proof. The fixing number of Cn, n ≥ 3 is 2 [8]. Thus, we have to find the

coefficients of the fixing polynomial fix(G, x) =
n∑

i=2
fix

i.

Case 1. (n is even) (a) For i = 2. Let F ⊆ V (G) with |F | = 2 such that
F ̸⊆ F(G, 2). Then there are n

2 such F since the only 2-element subsets of
V (G) which can not belong to F(G, 2) are those which consist of antipodal
vertices. Therefore, f2 =

(
n
2

)
− n

2 .

(b) For 3 ≤ i ≤ n, fi =
(
n
i

)
since choosing a fixing set of cardinality i from

V (G) is equivalent to selecting i vertices out of n vertices of G to destroy the
symmetry of G.
Case 2. (n is odd) By the same argument as in part (b) of Case 1, fi =

(
n
i

)
for all 2 ≤ i ≤ n.

Note that whenever n is even then f2 = |F(G, 2)| =
(
n
2

)
− n

2 , fi =
(
n
i

)
for

all 3 ≤ i ≤ n, and fi =
(
n
i

)
for all 2 ≤ i ≤ n when n is odd, so there exists

a mode k ∈ {n
2 − 1 (n is even), n+1

2 − 1 (n is odd)} such that, by using the

property
(
n
i

)
=

(
n

n−i

)
, we have f2 ≤ . . . ≤ fk−1 < fk > fk+1 ≥ . . . ≥ fn, which

shows that fix(G, x) is unimodal.
In the first part of the proof, we note that any two non-antipodal vertices

of G form a fix-set of G. So, for each v ∈ V (G), FV (v) = n − 2 for even n,
and FV (v) = n− 1 for odd n. �

Theorem 9. For t ≥ 2, let G be a complete multipartite graph Kn1,n2,...,nt

with ni ≥ 2 for each i, and n1 + n2 + . . .+ nt = n. Then

fix(G, x) = xn+

t∑
j=1

[

t∑
1=i1<i2<...<ij

ni1ni2 . . . nijx
n−j ].

Moreover, if Vj , 1 ≤ j ≤ t be the partite sets of G of cardinality nj, then for
each v ∈ Vj,

FV (v) =
t∏

i=1
i ̸=j

ni(nj−1).

Proof. It was shown in [6] that fix(G) = n− t. Therefore, we find the fixing
sequence (fn−t, fn−t+1, . . . , fn) to derive the fixing polynomial fix(G, x) =∑n

i=n−t fix
i. In fact, we have to compute each coefficient fn−j for 2 ≤ j ≤ t,

where as, the coefficients fn−1 = n and fn = 1.
Note that, to make a fixing set F of cardinality n− j, we need to choose all

the vertices of G except j vertices with one vertex from each partite set, and

this can be done in
t∑

1=i1<i2<...<ij

ni1ni2 . . . nij different ways, and it completes

the proof for the fixing polynomial of G.
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Consider a locally fixed vertex v in Vj , then out of remaining nj −1 vertices
of Vj , nj − 2 vertices can be chosen in nj − 1 different ways. Also, from each
partite set Vi (i ̸= j), ni − 1 vertices out of ni vertices can be chosen in ni

different ways, where i = 1, 2, . . . , t (i ̸= j). Hence, FV (v) =
t∏

i=1
i ̸=j

ni(nj−1). �

The lexicographic product of a graph G with a graph H, denoted by G[H],
is the graph having vertex set V (G)×V (H) = {(u, v) | u ∈ V (G), v ∈ V (H)}
and for two distinct vertices (u, v), (u′, v′) of G[H], (u, v) ∼e (u′, v′) whenever
u = u′ and v ∼e v′ or u ∼e u′.

The following result gives the fixing number of Cn[Km].

Theorem 10. Let G be the graph Cn[Km] with n ≥ 3 (n ̸= 4) and m ≥ 2.
Then fix(G) = n(m− 1).

Proof. Let V (G) = {(ui, vj); 1 ≤ i ≤ n, 1 ≤ j ≤ m}, where ui ∈ V (Cn) and

vj ∈ V (Km). Then there are n twin-sets of cardinality m in G, and hence
at least m − 1 elements from each twin-set belong to any fixing set of G, so
fix(G) ≥ n(m− 1). Further, note that, the set F = {(ui, vj); 1 ≤ i ≤ n, 1 ≤
j ≤ m − 1} is a fixing set of G of cardinality n(m − 1), which implies that
fix(G) = n(m− 1). �

Theorem 11. Let G be the graph Cn[Km] with n ≥ 3 (n ̸= 4) and m ≥ 2.
Then

fix(G, x) =
n∑

i=0

(
n

i

)
mn−ixn(m−1)+i.

Further, for every vertex v of G, FV (v) = (m− 1)mn−1.

Proof. There are n twin-sets of cardinality m in G. Out of these n twin-sets,
we can choose r twin-sets from which we will choose all the m elements, and
this can be done in

(
n
r

)
different ways. Further, amongst the remaining n− r

twin-sets, we can choose m−1 elements out of m elements, which can be done

in mn−r different ways. It yields that fix(G, x) =
n∑

i=0

(
n
i

)
mn−ixn(m−1)+i.

To make a fix-set of G, note that, out of m elements of a twin-set, we must
choose m − 1 elements and for a locally fixed vertex v in G, m − 2 elements
from the twin-set containing v can be chosen in m − 1 different ways. For a
twin-set, not containing v, m − 1 elements out of m elements can be chosen
in m different ways. Hence, FV (v) = (m− 1)mn−1. �
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