ON SOME PARAMETERS RELATED TO FIXING SETS IN GRAPHS

IMRAN JAVAID ${ }^{1}$, MUHAMMAD FAZIL ${ }^{2}$, USMAN ALI ${ }^{3}$, MUHAMMAD SALMAN ${ }^{4}$

Abstract

The fixing number of a graph G is the smallest cardinality of a set of vertices $F \subseteq V(G)$ such that only the trivial automorphism of G fixes every vertex in F. In this paper, we introduce and study three new fixing parameters: fixing share, fixing polynomial and fixing value.

Key words : fixing number, fixing share, fixing polynomial, fixing value. AMS SUBJECT : 05C12, 05C25, 05C31.

1. Introduction

Unless otherwise specified, all the graphs G considered in this paper are simple, non-trivial and connected with vertex set $V(G)$ and edge set $E(G)$. We write $u \sim^{e} v$ if two vertices u and v form an edge in G and $u \not \chi^{e} v$ if u and v do not form an edge in G. The subgraph induced by a set S of vertices of G is denoted by $\langle S\rangle$. The neighborhood of a vertex v of G is the set $N(v)=\left\{u \in V(G): u \sim^{e} v\right\}$. The number of elements in $N(v)$ is the degree of v, denoted by $d(v)$. The maximum degree of G is denoted by $\Delta(G)$. A vertex v with $d(v)=0$ is an isolated vertex. If two distinct vertices u and v of G have the property that $N(u)-\{v\}=N(v)-\{u\}$, then u and v are called twin vertices (or simply twins) in G. If for a vertex u of G, there exists a vertex $v \neq u$ in G such that u, v are twins in G, then u is said to be a twin in G. A set $T \subseteq V(G)$ is said to be a twin-set in G if every two elements of T are twin vertices of G. The complement of G, denoted by \bar{G}, has the same vertex set as G and $x \sim^{e} y$ in \bar{G} if and only if $x \not \chi^{e} y$ in G.

An automorphism of G is a bijective mapping $\phi: V(G) \rightarrow V(G)$ such that $(u) \phi \sim^{e}(v) \phi$ if and only if $u \sim^{e} v$. Thus, each automorphism of G is a

Centre for advanced studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan.
Email: ${ }^{1}$ imranjavaid45@gmail.com, ${ }^{2}$ mfazil@bzu.edu.pk, ${ }^{3}$ uali@bzu.edu.pk, ${ }^{4}$ solo33@gmail.com. Corresponding author: mfazil@bzu.edu.pk.
permutation on the vertex set $V(G)$, which preserves adjacencies and nonadjacencies. The automorphism group of a graph G, denoted by $\Gamma(G)$, is the set of all automorphisms of a graph G. The stabilizer of a vertex v of a graph G, denoted by $\Gamma_{v}(G)$, is the set $\{\phi \in \Gamma(G):(v) \phi=v\}$. The stabilizer of a subset $F \subseteq V(G)$ is $\Gamma_{F}(G)=\{\phi \in \Gamma(G):(v) \phi=v \forall v \in F\}$. Note that $\Gamma_{F}(G)=\bigcap_{v \in F} \Gamma_{v}(G)$. The orbit of a vertex v of a graph G, denoted by $\mathcal{O}(v)$, is the set $\{u \in V(G):(v) \alpha=u$ for some $\alpha \in \Gamma(G)\}$. Two vertices u and v are said to be similar if they belong to the same orbit. The number $d(u, v)$ denotes the distance between two vertices u and v of G, which is the number of edges in a shortest $u-v$ path in G. We note a well established fact that every automorphism is also an isometry, that is, for any $\psi \in \Gamma(G)$ and $u, v \in V(G)$, $d(u, v)=d((u) \psi,(v) \psi)[4]$.

A vertex v of a graph G is said to be fixed by a group element $\phi \in \Gamma(G)$ if $\phi \in \Gamma_{v}(G)$. A subset $F \subseteq V(G)$ is called a fixing set of G if $\Gamma_{F}(G)$ is trivial. In this case, we say that F fixes G. The fixing number of G, fix (G), is the minimum cardinality of a fixing set of G [8]. Each graph has a fixing set. Trivially, the set of vertices of G itself is a fixing set. It is also clear that any set containing all but one vertex is a fixing set. In [10], it was shown that the only connected graph with $\operatorname{fix}(G)=n-1$ is the complete graph on $n \geq 2$ vertices. Also, it has been noted that $f i x\left(\overline{K_{n}}\right)=n-1$. On the other hand, a graph G has $\operatorname{fix}(G)=0$ if and only if $\Gamma(G)$ is trivial. Thus, for a graph G on $n \geq 1$ vertices, $0 \leq \operatorname{fix}(G) \leq n-1$ [3]. Unless otherwise specified, all the graphs considered in this paper have non-trivial automorphisms group.

The fixing number of a graph G was first defined by Erwin and Harary in 2006 [8]. Boutin introduced the concept of determining set and defined it as follows: A subset D of the vertices in a graph G is called a determining set if whenever $g, h \in \Gamma(G)$ with the property that $(u) g=(u) h$ for all $u \in D$, then $(v) g=(v) h$ for all $v \in V(G)$ [5]. The minimum cardinality of a determining set is called the determining number. In [10], it was shown that fixing set and determining set are equivalent. A considerable literature has been developed in this field (see $[2,3,6,8,12]$). The concept of the fixing number originates from the idea of breaking symmetries in graphs which have applications in the problem of programming a robot to manipulate objects [13].

A finite sequence of real numbers $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is said to be unimodal if there is some $k \in\{0,1, \ldots, n\}$, called the mode of the sequence, such that $x_{0} \leq x_{1} \leq \ldots \leq x_{k-1} \leq x_{k} \geq x_{k+1} \geq \ldots \geq x_{n-1} \geq x_{n}$. The mode is unique if $x_{k-1}<x_{k}>x_{k+1}$. A polynomial is called unimodal if the sequence of its coefficients is unimodal.

The rest of the paper is organized as follows: In section 2 , we quantify the participation of each vertex v of a graph G to fix any pair of vertices of G in order to break the symmetry of the graph, and we call this quantity the
fixing share of v. We also investigate some useful results related to fixing share in this section. In section 3, a new graph polynomial, called the fixing polynomial, as well as a new fixing parameter, called the fixing value, are defined and studied. Some basic properties and useful results related to these newly defined parameters are also derived in this section. Moreover, fixing polynomials and fixing values in some well-known families of graphs such as cycles, complete multipartite graphs and lexicographic product of cycle with m isolated vertices are found. Also, we discuss the unimodality of the fixing polynomial of cycles.

2. Fixing Share

In this section, we define the concept of fixing share and investigate some basic results. We begin with the following useful preliminaries: Let G be a connected graph. A vertex v of G is said to be fixed if $(v) \psi=v$ for all $\psi \in \Gamma(G)$, that is, $\Gamma_{v}(G)=\Gamma(G)$. A vertex v of G is said to be locally fixed by an automorphism ϕ of G if $\phi \in \Gamma_{v}(G)$ and $\Gamma_{v}(G) \neq \Gamma(G)$. In order to avoid confusion of terms fixed and locally fixed, we shall use the term 'globally fixed' instead of just 'fixed'. For instance, in the graph G_{1} of Figure 1, the vertex v_{2} is locally fixed by the automorphism $\left(v_{5} v_{6}\right)$, whereas the vertex v_{3} is globally fixed.

Figure 1. The graph G_{1}
From the definitions of globally fixed and locally fixed vertex, we have the following remark:

Remark 1. (1) For a locally fixed vertex u and for a globally fixed vertex v of a graph G, there is no automorphism ψ of G such that $(u) \psi=v$ or $(v) \psi=u$. (2) If v is a globally fixed vertex and u is a locally fixed vertex in a graph G, then $\mathcal{O}(v)=\{v\}$ and $|\mathcal{O}(u)| \geq 2$.

Let $V_{s}(G)=\{(u, v): u, v \in V(G)$ and u, v are distinct similar vertices $\}$. A vertex v of G is said to locally fix a pair $(x, y) \in V_{s}(G)$, if $(x) \psi \neq y$ and (y) $\psi \neq x$, for all $\psi \in \Gamma_{v}(G)$. We shall say that locally fixing v destroys all the automorphisms in which x is mapped onto y and y is mapped onto x. For instance, in the graph G_{1}, v_{6} does not locally fix the pair $\left(v_{1}, v_{2}\right)$, because there is an automorphism $\psi=\left(v_{1} v_{2}\right)$ in $\Gamma_{v_{6}}\left(G_{1}\right)$ such that $\left(v_{1}\right) \psi=v_{2}$ and
$\left(v_{2}\right) \psi=v_{1}$. However, the vertex v_{6} locally fixes the pair $\left(v_{5}, v_{6}\right)$ because there is no automorphism ϕ in $\Gamma_{v_{6}}\left(G_{1}\right)$ such that $\left(v_{5}\right) \phi=v_{6}$ and $\left(v_{6}\right) \phi=v_{5}$.

For a pair (u, v) of distinct vertices of G, the fixing neighborhood of (u, v) is denoted by $F(u, v)$ and is defined as: $F(u, v)=\{x \in V(G):(u) \psi \neq$ $\left.v \wedge(v) \psi \neq u, \forall \psi \in \Gamma_{x}(G)\right\}$. From this definition, we observe that, the fixing neighborhood of $(u, v) \in V_{s}(G)$ contains both the vertices u and v.
From the definition of $F(u, v)$ and Remark 1, we have the following remark:
Remark 2. If v is a globally fixed vertex of G, then $F(v, u)=V(G)$ for all $u \in V(G)-\{v\}$. Moreover, $v \notin F(x, y)$ for any distinct $x, y \in V(G)$.
Definition 1. (Fixing share) Let G be a connected graph. For any pair (u, v) of distinct vertices of G and for any $w \in V(G)$, the quantity
$f_{w}(u, v)=\left\{\begin{array}{cl}0 & \text { when } w \notin F(u, v), \\ \frac{1}{|F(u, v)|} & \text { when } w \in F(u, v),\end{array}\right.$
is called the fixing share of w for the pair (u, v).
For example, in the graph G_{1} of Figure $1, F\left(v_{1}, v_{2}\right)=\left\{v_{1}, v_{2}\right\}$, and thus
$f_{w}\left(v_{1}, v_{2}\right)= \begin{cases}\frac{1}{2} & \text { when } w \in F\left(v_{1}, v_{2}\right), \\ 0 & \text { otherwise. }\end{cases}$
From the definition of fixing share, we observe that, $f_{u}(u, v) \neq 0 \neq f_{v}(u, v)$ for every two locally fixed vertices u and v.

In view of Remarks 1 and 2, from now onwards, each pair of vertices of a graph G considered for computing its fixing share is from the set $V_{s}(G) \subseteq V_{p}$, where V_{p} denotes the collection of all $\binom{n}{2}$ pairs of the vertices of G.
Properties 1. (1) The fixing neighborhood of a pair $(u, v) \in V_{s}(G)$ is the class of all those vertices of G whose fixing share for the pair (u, v) is the same.
(2) For $w \in V(G)$ and $(u, v) \in V_{s}(G), 0 \leq f_{w}(u, v) \leq \frac{1}{2}$. The sharpness of the upper bound in this inequality follows if and only if u and v are twin vertices and $w \in\{u, v\}$.
(3) A twin in G is a locally fixed vertex. Because, for a twin x in G, there exists a vertex $y \neq x$ in G such that x and y are twin vertices, and hence there is an automorphism $\psi=(x y)$ of G with the property that $(x) \psi=y$ and (y) $\psi=x$, and can be destroyed only by fixing either x or y.
(4) Let $J=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V(G),(k \geq 2)$. If for every two elements $u, v \in J, f_{w}(u, v)=\frac{1}{2}$, then at least $k-1$ elements of J must belong to any fixing set F for G.
(5) For a pair $(u, v) \in V_{s}(G)$, if $f_{w}(u, v)=\frac{1}{|G|}$, then there is no globally fixed vertex in G. Since if there is a globally fixed vertex x in G, then $F(u, v) \neq$ $V(G)$ because for a globally fixed vertex $x, \Gamma_{x}(G)=\Gamma(G)$ which implies that $f_{w}(u, v) \neq \frac{1}{|G|}$, a contradiction.
(6) For two distinct locally fixed vertices u and v of a graph $G, F(u, v)=\{u, v\}$ if and only if there is an automorphism of G which is a transposition ($u v$) on $V(G)$ and can be destroyed by fixing u and v only.
(7) For any two distinct locally fixed vertices u and v of a graph G, $(u v)$ is a transposition if u and v are twins.

Let D_{i} denotes the class of all the vertices of a connected graph G having degree i for $1 \leq i \leq \Delta(G)$, and is called the degree class in G. A degree class may be empty. Note that, all the non-empty degree classes in G form a partition of $V(G)$, called the degree partition of $V(G)$. Thus, we have the following straightforward lemma:

Lemma 1. Let G be a connected graph and $\left\{U_{i} ; 1 \leq i \leq \Delta(G)\right\}$ be the degree partition of $V(G)$. Then for $u \in U_{i}$ and $v \in U_{j \neq i}, f_{w}(u, v) \neq 0$ for all $w \in V(G)$.

Theorem 2. Let G be a connected graph of order $n \geq 2$. Let J be the set of $p \geq 1$ globally fixed vertices of G and $\left\{U_{i} ; 1 \leq i \leq k\right\}(k \leq \Delta(G))$ be the degree partition of $V(G)$. Let $S_{i}=U_{i}-J$ for $1 \leq i \leq k$. Then the number of pairs (u, v) in V_{p} for which $f_{w}(u, v) \neq 0$ for all $w \in V(G)$ is bounded below by

$$
\frac{p}{2}(2 n-p-1)+\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}\left|S_{i}\right|\left|S_{j}\right| .
$$

Moreover, this bound is sharp.
Proof. Since there are $p \geq 1$ globally fixed vertices in G, so we have $\binom{p}{2}+$ $p(n-p)$ pairs (u, v) in $V_{p}-V_{s}(G)$ for which $f_{w}(u, v) \neq 0$ for all $w \in V(G)$. Further, since for each $u \in S_{i}$ and $v \in S_{j \neq i}, d(u) \neq d(v)$, so Lemma 1 yields that there are at least

$$
\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}\left|S_{i}\right|\left|S_{j}\right|
$$

pairs (u, v) in $V_{s}(G)$ for which $f_{w}(u, v) \neq 0$ for all $w \in V(G)$. It completes the proof of first part.

For sharpness, consider a complete graph $K_{t}(t \geq 2)$ and a star graph $K_{1, r}(r \geq 2)$ with center, say c. Make a graph G of order $n=t+r+1$ by joining the vertex c of $K_{1, r}$ by any edge with a vertex, say v, of K_{t}. One can see that for the pairs (c, x) and (v, y) with $x \in\left(V\left(K_{t}\right) \cup V\left(K_{1, r}\right)-\{c\}\right)$ and $y \in\left(V\left(K_{t}\right) \cup V\left(K_{1, r}\right)-\{c, v\}\right), f_{w}(c, x)=f_{w}(v, y) \neq 0$ for all $w \in V(G)$, and there are $2(r+t)-1$ such pairs in V_{p}. Also, for each pair (x, y) with $x \in V\left(K_{t}\right)-\{v\}$ and $y \in V\left(K_{1, r}\right)-\{c\}, f_{w}(x, y) \neq 0$ for all $w \in V(G)$, and
there are $r(t-1)$ such pairs in V_{p}. Therefore, there are exactly

$$
r(t+1)+2 t-1=\frac{p}{2}(2 n-p-1)+\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}\left|S_{i}\right|\left|S_{j}\right|
$$

pairs (u, v) in V_{p} for which $f_{w}(u, v) \neq 0$ for all $w \in V(G)$. Because, in this graph $G, J=\{c, v\}$ and we have four classes in the degree partition of $V(G)$, namely $U_{1}=D_{1}$ with $\left|U_{1}\right|=r, U_{2}=D_{r+1}=\{c\}$ with $\left|U_{2}\right|=1$, $U_{3}=D_{t}=\{v\}$ with $\left|U_{3}\right|=1$, and $U_{4}=D_{t-1}$ with $\left|U_{4}\right|=t-1$. Note that $S_{1}=U_{1}, S_{4}=U_{4}$ and $S_{2}=S_{3}=\emptyset$.

3. Fixing polynomials and Fixing values

One of the most general approaches to graph polynomials was proposed by Farrell [9] in his theory of F-polynomials of a graph. According to Farrell, any such polynomial corresponds to a strictly prescribed family of connected subgraphs of the respective graph. For the domination polynomial of G [1], this family corresponds to all the dominating sets of G; for the chromatic polynomial of $G[7]$, this family corresponds to all the color classes of G; for the matching polynomial of a graph G [9], this family corresponds to all the edges of G; for the independence polynomial of G [11], this family corresponds to all the stable (independent) sets of G; for the resolving polynomial of G [14], this family corresponds to all the resolving sets of G.

In this section, we introduce the fixing polynomial of G, this family includes all the fixing sets of G. In fact, various aspects of combinatorial information concerning a graph is stored in the coefficients of a specific graph polynomial.

For a graph G of order n with fixing number $\operatorname{fix}(G)$, the fixing polynomial fix (G, x) is a generating polynomial for the fixing sequence $\left(f_{\text {fix }(G)}, f_{f i x(G)+1}\right.$, \ldots, f_{n}) which helps in counting all the fixing sets of cardinality i; fix $(G) \leq$ $i \leq n$, for G. The fixing polynomial of a graph is a good representative of the fixing structure of the graph. This polynomial is defined as follows: Let G be a graph. An i-set is a subset of $V(G)$ of cardinality i. Let $\mathcal{F}(G, i)$ denotes the family of all the fixing sets of G which are i-sets and let $f_{i}=|\mathcal{F}(G, i)|$. Then the fixing polynomial of G, denoted by $\operatorname{fix}(G, x)$, is defined as

$$
f i x(G, x)=\sum_{i=f i x(G)}^{n} f_{i} x^{i},
$$

where $\operatorname{fix}(G)$ is the fixing number of G. It is worth mentioning that $f_{i}=0$ if and only if $i=f i x(G)=0$ or $i<f i x(G)$.

Example 1. Let G be the co-eiffeltower graph. Then $\operatorname{fix}(G)=1$, because $\mathcal{O}\left(v_{3}\right)=|\Gamma(G)|[8]$. The fixing sequence for G is $(4,18,34,35,21,7,1)$ and due

Figure 2. co-eiffeltower graph
to this sequence, we have the fixing polynomial of G as $x^{7}+7 x^{6}+21 x^{5}+35 x^{4}+$ $34 x^{3}+18 x^{2}+4 x$.

In a polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, the coefficient a_{n} is called the leading coefficient of $P(x)$. If $a_{n}=1$, then the polynomial $P(x)$ is called monic. Followings are some properties of fixing polynomial fix (G, x) of a graph G of order n.

Properties 2. (1) Since the only fixing set of cardinality n is the set $V(G)$ and a fixing set for G of cardinality $n-1$ can be chosen in n possible different ways, so $f_{n}=1$ and $f_{n-1}=n$.
(2) By (1), it follows that fix (G, x) is monic.
(3) ${ }^{\mathrm{V} \text { Tince }} f_{i}=0$ for $i=\operatorname{fix}(G)=0$ or $i<f i x(G)$, so fix (G, x) has no constant term.
(4) Since there exists at least one fixing set of cardinality fix $(G) \neq 0$ and by 3 (1), f $=4$. So, each term of the fixing sequence $\left(f_{\text {fix }(G)}, f_{\text {fix }(G)+1}, \ldots, f_{n}\right)$ is no zero.
$\mathrm{v}_{5}(5)^{\mathrm{V}}$ Eor añy $a, b \in[0, \infty)$ such that $a<b$, fix $(G, a)<$ fix (G, b). It concludes that fix (G, x) is strictly increasing function on $[0, \infty)$.
(6) If H is any subgraph of G, then $\operatorname{deg}(\operatorname{fix}(G, x)) \geq \operatorname{deg}(f i x(H, x))$.

It is easy to see that if a graph G has n components $G_{1}, G_{2}, \ldots, G_{n}$, then a fixing set for a graph G can be obtained by taking the union of fixing sets for $G_{1}, G_{2}, \ldots, G_{n}$. Thus, $\operatorname{fix}(G)=f i x\left(G_{1}\right)+f i x\left(G_{2}\right)+\ldots+f i x\left(G_{n}\right)$. Therefore, we have the following remark:
Remark 3. (1) If G is a graph with n components $G_{1}, G_{2}, \ldots, G_{n}$, then the fixing polynomial of G is $\operatorname{fix}(G, x)=\prod_{i=1}^{n}$ fix $\left(G_{i}, x\right)$.
(2) If G is the union of $n \geq 2$ isolated vertices, then fix $(G, x)=x^{n}+n x^{n-1}$.
(3) If G is a graph with $r \geq 2$ isolated vertices and H be a graph induced by the set $V(G)-Y$, where Y is the set of r isolated vertices, then $\operatorname{fix}(H, x)=$ $\frac{f i x(G, x)}{x^{r}+r x^{r-1}}$.

The number of isolated vertices in a graph G can be obtained if the fixing polynomials of G and its subgraph H are known, as we show in the following lemma.

Lemma 3. Let G be a graph of order $n \geq 4$ with $r \geq 2$ isolated vertices and H be its subgraph induced by the set $V(G)-Y$, where Y is the set of r isolated vertices. If $\operatorname{fix}(G, x)=\sum_{i=f i x(G)}^{n} f_{i} x^{i}$ and $f i x(H, x)=\sum_{j=f i x(H)}^{n-r} f_{j} x^{j}$ are the fixing polynomials of G and H, respectively, then $r=\frac{f_{f i x(G)}}{f_{f i x(H)}}$.

Proof. Let K be a graph induced by Y, then $f i x(K, x)=x^{r}+r x^{r-1}$. Since H is a graph induced by $V(G)-Y$, so $f i x(H, x)=\sum_{i=f i x(H)}^{m} f_{i} x^{i}$, where $m=$ $|V(G)-Y|$. Since G is a graph consisting of two components K and H, so fix $(G, x)=\operatorname{fix}(K, x)$ fix (H, x). This implies that

$$
\sum_{i=f i x(G)}^{n} f_{i} x^{i}=\left(x^{r}+r x^{r-1}\right)\left(\sum_{i=f i x(H)}^{m} f_{i} x^{i}\right) .
$$

It follows that

$$
f_{f i x(G)} x^{f i x(G)}+\sum_{i=f i x(G)+1}^{m+r} f_{i} x^{i}=r f_{f i x(H)} x^{f i x(H)+r-1}+\ldots+f_{m+r} x^{m+r}
$$

Since $\operatorname{fix}(G)=f i x(H)+f i x(K)=f i x(H)+r-1$. Therefore, by comparing the coefficients of $x^{f i x(G)}$ and $x^{f i x(H)+r-1}$, we have the required result.

In a graph G, we call a fixing set of G of cardinality $\operatorname{fix}(G)$, the fix-set of G, and we denote the total number of the fix-sets of G by $T(G)$. It follows from the definition of fixing polynomial that $T(G)=f_{f i x(G)}=\mid \mathcal{F}(G$, fix $(G)) \mid$. Now, we define the fixing value of each vertex of G as follows: For each vertex $v \in V(G)$, the fixing value of v, denoted by $F V_{G}(v)$, is the number of fix-sets of G for which v belongs. We simply write $F V(v)$ instead of $F V_{G}(v)$ if G is clear from the context. Since, the fixing number of the graph G of Figure 2 is 1 , so $T(G)=f_{1}=4$. This implies that $F V\left(v_{3}\right)=1$.

The following straightforward assertions hold in the context of fixing value.
Proposition 4. Let G be a graph, then
(1) $\sum_{v \in V(G)} F V(v)=T(G)$ fix (G).
(2) If u and v are similar vertices in G, then $F V(v)=F V(u)$.
(3) If G has $n \geq 2$ components $G_{1}, G_{2}, \ldots, G_{n}$, then $T(G)=\prod_{i=1}^{n} T\left(G_{i}\right)$. Furthermore, for $v \in V(G), F V(v)=F V_{G_{i}}(v) \prod_{\substack{j=1 \\ j \neq i}}^{n} T\left(G_{j}\right)$.

According to the definition of twin vertices and twin-set, we have the followings:

Proposition 5. Suppose that u, v are twins in a connected graph G and F is a fixing set of G. Then either u or v is in F. Moreover, if $u \in F$ and $v \notin F$, then $(F-\{u\}) \cup\{v\}$ is a fixing set of G.

Proposition 6. For each pair (u, v) of twin vertices of a graph $G|F(u, v)|=2$ and $F(u, v)=\{u, v\}$.

Remark 4. Let T be a twin-set of order $m \geq 2$ in a connected graph G. Then every fixing set F of G contains at least $m-1$ vertices of T.

Proposition 7. For each pair $(u, v) \in V_{p}$, we have

$$
T(G) \leq \sum_{v_{0} \in F(u, v)} F V\left(v_{0}\right) \leq T(G) \text { fix }(G) .
$$

Proof. The upper bound follows from the Proposition 4(1). For the lower bound, note that any fixing set F of G must contain a vertex from the fixing neighborhood $F(u, v)$, otherwise it is not a fixing set of G.
3.1. Fixing polynomials and fixing values in some well-known families of graphs. In this section, we consider cycles, complete multipartite graphs and lexicographic product of cycles with m isolated vertices in the context of fixing polynomial and fixing value. Also, we discuss the unimodality of the fixing polynomial of cycles.

Two vertices u and v in a connected graph G are said to be antipodal if $d(u, v)=\operatorname{diam}(G)$. Otherwise, u and v are non-antipodal.

Theorem 8. Let G be a cycle C_{n} with $n \geq 3$. Then
$f i x(G, x)= \begin{cases}\frac{1}{2} n(n-2) x^{2}+\sum_{i=3}^{n}\binom{n}{i} x^{i} & \text { if } n \text { is even }, \\ \sum_{i=2}^{n}\binom{n}{i} x^{i} & \text { if } n \text { is odd } .\end{cases}$
Further, this polynomial is unimodal. Moreover, for each vertex v of G,
$F V(v)= \begin{cases}n-1 & \text { if } n \text { is odd }, \\ n-2 & \text { if } n \text { is even } .\end{cases}$

Proof. The fixing number of $C_{n}, n \geq 3$ is 2 [8]. Thus, we have to find the coefficients of the fixing polynomial $\operatorname{fix}(G, x)=\sum_{i=2}^{n} f_{i} x^{i}$.
Case 1. (n is even) (a) For $i=2$. Let $F \subseteq V(G)$ with $|F|=2$ such that $F \nsubseteq \mathcal{F}(G, 2)$. Then there are $\frac{n}{2}$ such F since the only 2-element subsets of $V(G)$ which can not belong to $\mathcal{F}(G, 2)$ are those which consist of antipodal vertices. Therefore, $f_{2}=\binom{n}{2}-\frac{n}{2}$.
(b) For $3 \leq i \leq n, f_{i}=\binom{n}{i}$ since choosing a fixing set of cardinality i from $V(G)$ is equivalent to selecting i vertices out of n vertices of G to destroy the symmetry of G.
Case 2. (n is odd) By the same argument as in part (b) of Case 1, $f_{i}=\binom{n}{i}$ for all $2 \leq i \leq n$.

Note that whenever n is even then $f_{2}=|\mathcal{F}(G, 2)|=\binom{n}{2}-\frac{n}{2}, f_{i}=\binom{n}{i}$ for all $3 \leq i \leq n$, and $f_{i}=\binom{n}{i}$ for all $2 \leq i \leq n$ when n is odd, so there exists a mode $k \in\left\{\frac{n}{2}-1\right.$ (n is even), $\frac{n+1}{2}-1$ (n is odd) $\}$ such that, by using the property $\binom{n}{i}=\binom{n}{n-i}$, we have $f_{2} \leq \ldots \leq f_{k-1}<f_{k}>f_{k+1} \geq \ldots \geq f_{n}$, which shows that $\operatorname{fix}(G, x)$ is unimodal.

In the first part of the proof, we note that any two non-antipodal vertices of G form a fix-set of G. So, for each $v \in V(G), F V(v)=n-2$ for even n, and $F V(v)=n-1$ for odd n.

Theorem 9. For $t \geq 2$, let G be a complete multipartite graph $K_{n_{1}, n_{2}, \ldots, n_{t}}$ with $n_{i} \geq 2$ for each i, and $n_{1}+n_{2}+\ldots+n_{t}=n$. Then
fix $(G, x)=x^{n}+\sum_{j=1}^{t}\left[\sum_{1=i_{1}<i_{2}<\ldots<i_{j}}^{t} n_{i_{1}} n_{i_{2}} \ldots n_{i_{j}} x^{n-j}\right]$.
Moreover, if $V_{j}, 1 \leq j \leq t$ be the partite sets of G of cardinality n_{j}, then for each $v \in V_{j}$,
$F V(v)=\prod_{\substack{i=1 \\ i \neq j}}^{t} n_{i}\left(n_{j}-1\right)$.
Proof. It was shown in [6] that $\operatorname{fix}(G)=n-t$. Therefore, we find the fixing sequence $\left(f_{n-t}, f_{n-t+1}, \ldots, f_{n}\right)$ to derive the fixing polynomial fix $(G, x)=$ $\sum_{i=n-t}^{n} f_{i} x^{i}$. In fact, we have to compute each coefficient f_{n-j} for $2 \leq j \leq t$, where as, the coefficients $f_{n-1}=n$ and $f_{n}=1$.

Note that, to make a fixing set F of cardinality $n-j$, we need to choose all the vertices of G except j vertices with one vertex from each partite set, and this can be done in $\sum_{1=i_{1}<i_{2}<\ldots<i_{j}}^{t} n_{i_{1}} n_{i_{2}} \ldots n_{i_{j}}$ different ways, and it completes the proof for the fixing polynomial of G.

Consider a locally fixed vertex v in V_{j}, then out of remaining $n_{j}-1$ vertices of $V_{j}, n_{j}-2$ vertices can be chosen in $n_{j}-1$ different ways. Also, from each partite set $V_{i}(i \neq j), n_{i}-1$ vertices out of n_{i} vertices can be chosen in n_{i} different ways, where $i=1,2, \ldots, t(i \neq j)$. Hence, $F V(v)=\prod_{\substack{i=1 \\ i \neq j}}^{t} n_{i}\left(n_{j}-1\right)$.

The lexicographic product of a graph G with a graph H, denoted by $G[H]$, is the graph having vertex set $V(G) \times V(H)=\{(u, v) \mid u \in V(G), v \in V(H)\}$ and for two distinct vertices $(u, v),\left(u^{\prime}, v^{\prime}\right)$ of $G[H],(u, v) \sim^{e}\left(u^{\prime}, v^{\prime}\right)$ whenever $u=u^{\prime}$ and $v \sim^{e} v^{\prime}$ or $u \sim^{e} u^{\prime}$.

The following result gives the fixing number of $C_{n}\left[\overline{K_{m}}\right]$.
Theorem 10. Let G be the graph $C_{n}\left[\overline{K_{m}}\right]$ with $n \geq 3(n \neq 4)$ and $m \geq 2$. Then $\operatorname{fix}(G)=n(m-1)$.

Proof. Let $V(G)=\left\{\left(u_{i}, v_{j}\right) ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$, where $u_{i} \in V\left(C_{n}\right)$ and $v_{j} \in V\left(\overline{K_{m}}\right)$. Then there are n twin-sets of cardinality m in G, and hence at least $m-1$ elements from each twin-set belong to any fixing set of G, so fix $(G) \geq n(m-1)$. Further, note that, the set $F=\left\{\left(u_{i}, v_{j}\right) ; 1 \leq i \leq n, 1 \leq\right.$ $j \leq m-1\}$ is a fixing set of G of cardinality $n(m-1)$, which implies that fix $(G)=n(m-1)$.

Theorem 11. Let G be the graph $C_{n}\left[\overline{K_{m}}\right]$ with $n \geq 3(n \neq 4)$ and $m \geq 2$. Then

$$
f i x(G, x)=\sum_{i=0}^{n}\binom{n}{i} m^{n-i} x^{n(m-1)+i} .
$$

Further, for every vertex v of $G, F V(v)=(m-1) m^{n-1}$.
Proof. There are n twin-sets of cardinality m in G. Out of these n twin-sets, we can choose r twin-sets from which we will choose all the m elements, and this can be done in $\binom{n}{r}$ different ways. Further, amongst the remaining $n-r$ twin-sets, we can choose $m-1$ elements out of m elements, which can be done in m^{n-r} different ways. It yields that $\operatorname{fix}(G, x)=\sum_{i=0}^{n}\binom{n}{i} m^{n-i} x^{n(m-1)+i}$.

To make a fix-set of G, note that, out of m elements of a twin-set, we must choose $m-1$ elements and for a locally fixed vertex v in $G, m-2$ elements from the twin-set containing v can be chosen in $m-1$ different ways. For a twin-set, not containing $v, m-1$ elements out of m elements can be chosen in m different ways. Hence, $F V(v)=(m-1) m^{n-1}$.

References

[1] S. Akbari, S. Alikhani, Yee-hock Peng: Characterization of graphs using domination polynomials, European J. Combin. 31(2010), 1714-1724.
[2] M. O. Albertson, D. L. Boutin: Using determining sets to distinguish Kneser graphs, Electron. J. Combin. 14(2007).
[3] M. O. Albertson, K. L. Collins: Symmetry breaking in graphs, Electron. J. Combin. 3(1996).
[4] N. Biggs: Algebraic Graph Theory, 2nd ed., Cambridge University Press, Cambridge (1993).
[5] D. L. Boutin: Identifying graph automorphisms using determining sets, Electron. J. Combin. 13(2006).
[6] J. Caceres, D. Garijo, M. L. Puertas, C. Seara: On the determining number and the metric dimension of graphs, Electron. J. Combin. 17(2010).
[7] F. M. Dong: Chromatic polynomials and chromaticity of graphs, World Scientific Publishing Company, Illustrated Edition (2005).
[8] D. Erwin, F. Harary: Destroying automorphisms by fixing nodes, Discrete Math. 306(2006), 3244-3252.
[9] E. J. Farrell: On a general class of graph polynomials, J. Combin. Theory B. 26(1979), 111-122.
[10] C. R. Gibbons, J. D. Laison: Fixing numbers of graphs and groups, Electron. J. Combin. 16(2009).
[11] I. Gutman, F. Harary: Generalizations of the matching polynomial, Util. Math. 24(1983), 97-106.
[12] F. Harary: Methods of destroying the symmetries of graph, Bull. Malasyan Math., Sc. Soc. 24(2001), 183-191.
[13] K. Lynch: Determining the orientation of a painted sphere from a single image: a graph coloring problem, URL: http://citeseer.nj.nec.com/469475.html (2001).
[14] M. Salman, M. A. Chaudhry, I. Javaid: The resolving polynomial of graph, Revised version submitted to Int. J. Comp. Math.

