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Introduction
When Stephen Hawking put his PhD thesis in the open domain on 

the net some 100,000 copies were downloaded, causing the site 
to crash repeatedly. There are certainly not 10,000, and perhaps 
not even 1,000, who can follow the Mathematics in that thesis.

 One concludes that the downloads were obtained because 
Hawking has become a cult figure and not because people 
expected to follow what he had said. This is borne out by the 
comments of people who had downloaded and wrote on a blog. 



Introduction
When Susskind and Hawking had a bet about Hawking’s

“information loss paradox” in 1997, it was noted only by
some of the physicists interested in black holes.
When Hawking paid for losing the bet in 2004 –– with

claims of not being actually wrong, but admitting that he
had lost the bet –– it became very big news.
Partly, it was because he had become more of a cult

figure by then, and partly because
“Hawking was actually wrong!”



Introduction
When I came across Hawking’s work on radiation
from black holes in 1976, I was excited at this
attempt to provide a “halfway house” for “the
quantization of gravity”, as it is called.
However, I found that some of the ideas did not
seem to lead to reasonable results –– they were
paradoxical.



Introduction
The work I did when I visited John Wheeler in Texas in

1978 led to some questions about an ambiguity in what
were then called “Penrose diagrams”, whose resolution
gives some insights into the spacetime structure of black
holes.
I found, in the early years of this millennium that the

history of the introduction of thermodynamics into black
hole discussions, was being distorted, so that even its
author had forgotten his contribution and needed to be
reminded of it.



Introduction
Again in the early years of this millennium, I found

that there is a problem with the claims of computing
the entropy of 2-d black holes.
My work with Wheeler, in 1986, led to some

conclusions that suggested that black holes need not
be “the end of the matter”, and suggest a nearly
classical resolution to the information loss paradox,
which should give a different picture to the Susskind-
’t Hooft resolution.



Introduction
In the first three talks I will discuss these issues and in the fourth, I will

present a proposed experiment to test between different, so-called,
interpretations of Quantum Theory. The plan of the talks is as follows:

1. The chronology of black hole thermodynamics;
2. My black hole paradoxes; 
3. The ambiguity in the Carter-Penrose diagram;
4. A nearly classical resolution of the information loss paradox;
5. The problem with 2-d black holes;
6. Conclusion. 
7. Proposed experiment to test “interpretations” of Quantum Theory. 



Chronology of Black Hole Thermodynamics
When I joined the PhD at Birkbeck College, London

University in 1968, Roger Penrose used to hold lunch time
seminars. At one of these he presented an interesting idea.
He addressed the question whether black holes could not

be used to violate the second law of thermodynamics. For
this purpose he imagined a civilization built on a hollow
Dyson sphere surrounding a black hole.
Their civilization is not only literally, but figuratively, built

around the black hole, as that is the source of power for
them.



Chronology of Black Hole Thermodynamics
The Black Hole Civilization: A box 

attached to a spring is filled with 
thermal radiation and lowered 
towards the black hole. As it goes 
down, it winds up the spring. Near 
the surface of the black hole the box 
is opened up, so that the radiation 
falls into the black hole. The lighter 
box, is now pulled up. The spring is 
obviously wound up more by the 
dropping box, than it uses in pulling 
it up. This generates their energy.



Chronology of Black Hole Thermodynamics
The second law has often been stated as “There is no such thing as a

free lunch”. Here, we not only get the “free lunch”, of usable energy for
unusable energy (like Aladin’s old lamps for new), but we also get rid of
thermal pollution, making room for more efficient heat engines.
We not only get the free lunch, we get paid for having it!
The only way to save the second law is to ascribe an entropy to the

black hole. As we feed the black hole our useless thermal energy, say E,
we increase its mass by ΔM/c2. The reduction of entropy of the Universe
is by ΔS = ΔM/c2T, where T is the temperature of the black hole.

This must be the increase of entropy of the black hole!



Chronology of Black Hole Thermodynamics
Here Penrose ran into a problem. What is meant
by the temperature of the black hole? He then
conjectured that the measure of entropy would be
given by the Weyl curvature tensor, which gives the
pure gravitational field, without any contamination
by matter. The problem is that it is trace-free, so
there ca be no scalar constructed from it. Thus one
has to go to a quadratic expression in the Weyl
tensor.



Chronology of Black Hole Thermodynamics
People talking of the history now, go into whether
Bekenstein or Hawking was first in introducing
thermodynamics into black hole Physics, totally
ignoring the fact that Penrose had talked of this
already in 1968 (at UT Austin, where Bekenstein
was working with Wheeler)
–– and Bekenstein was in the audience at the time!



Chronology of Black Hole Thermodynamics
In the early years of this millennium, I was asked by a

biographer of Penrose, to give my remarks about him.
Apart from the remarks, I pointed out that this work of
Penrose had been forgotten. It turned out that Penrose
had also forgotten it. After a bit of digging, we found some
record of it.
When I mentioned this to Leonard Susskind, after reading

his “Black Hole Wars”, he said it made sense, and
explained some things about the history that seemed odd.



Seeing an Object Enter a Black Hole
According to the standard view of black hole
physics, from outside we cannot see an object
enter a black hole. This is because the light from
it will be infinitely red-shifted and infinitely

time
---

delayed.



Seeing an Object Enter a Black Hole
Now, suppose that there is Hawking radiation, and there

is a black hole of mass such that it radiates at just above
the cosmic microwave background (CMBR) temperature of
2.725 oK, let us say at 3oK.
The Hawking temperature is

𝑇𝑇 =
ℎ𝑐𝑐3

16𝜋𝜋2𝐺𝐺𝐺𝐺𝐺𝐺
,

where M is the black hole mass and k Boltzmann’s constant.



Seeing an Object Enter a Black Hole
Now we throw a stone (that look like a  cloud in the 

diagram) into the black hole. Its mass, m, is chosen to be 
such that the Hawking temperature for the mass (M + m), 
is 2.725 oK. 



Seeing an Object Enter a Black Hole
Before the stone falls into the black hole, the black hole

is seen as 0.275 oK above the background. Once the stone
has fallen into the black hole, the radiation from the hole
is effectively “switched off”, as it merges into the CMBR
and we cease to see the black hole.
Thus we have seen the stone fall into the
black hole, as the shining black hole disappears
from view.



Seeing an Object Enter a Black Hole

This brings out the question of when the black
hole forms and when the singularity forms. That
leads to the question of when the Hawking
radiation can start. After all, as the matter falls into
the black hole there will be a back reaction, leading
to radiation of various frequencies with various
time delays. How can we tell when this radiation
has stopped and Hawking radiation started?



Detection of radiation in 
the shadow of a screen

An observer falling freely into a black hole will
see a flat, or Minkowski, spacetime. As such, the
black hole does not seem to exist to that
observer, till the time of hitting the singularity.
(Of course, tidal forces would be felt if the
observer is not a point.) As such this observer
would not see any Hawking radiation, but a fixed
observer would.



Detection of radiation in 
the shadow of a screen

Consider two screens 
made of photographic 
emulsion, one of which, 
S1, is much larger than 
the other, S2, and a black 
hole, BH, aligned. Take 
S1 to be falling freely 
towards BH, but S2 to be 
fixed relative to BH. 



Detection of radiation in 
the shadow of a screen

Now the radiation from the black hole is seen by
S1 but not by S2, despite the fact that S1 is in the
shadow of S2.
How can the radiation seen by S1 reach it but
not pass through S2?
One has to suppose that the radiation does not
travel from BH to S1, but arrives there nonlocally.



Detection of radiation in 
the shadow of a screen

If it comes nonlocally, WHEN does it appear?
If it is produced by the gravity of the black hole, how

valid is the assumption/approximation, that we can
ignore quantum gravity and accept the result as
correct? Only because it gives meaning to the entropy
of black holes, required to save the second law of
thermodynamics from the clutches of Penrose’s black
hole civilization, can it be accepted?



The Carter-Penrose Diagram
When I went to ICTP in 1975, I was asked to explain “Penrose

Diagrams”. Now I was writing a paper entitled “Penrose Graphs”, a
name I had given for the spacetime representation twistor scattering
diagrams. I thought that I was being asked about the energy-
momentum representation diagrams in MacCallum and Penrose’s,
Physics Reports.
It turned out that this was a name given to the conformally

compactified spacetime diagrams that Penrose used and which had
been extensively studied by his student, Martin Walker (with my
help). The name had been given by Hawking and Ellis in The Large
Scale Structure of Spacetime.



The Carter-Penrose Diagram
Penrose had never claimed to be the
originator of the diagrams and had been
using them. He told Hawking that the
diagrams had actually been developed by
Brandon Carter. Thereafter, Hawking
called them Carter-Penrose diagrams.



The Carter-Penrose Diagram
Since Walker developed the methods for the
diagrams further, I would call them Carter-
Penrose-Walker diagrams.
Having worked on these diagrams in helping
Walker, once I had seen what was being asked, I
had no hesitation in explaining them. I still don’t
and will go ahead and explain them here.



The Carter-Penrose Diagram
The usual spacetime diagram for the 

Schwarzschild black hole is as shown in the 
adjoining diagram. The vertical axis is time 
and the horizontal axes, (one dimension 
suppressed), space. Matter falls into the 
nascent black hole, till it becomes so dense 
that even light cannot escape from it. The 
radius at which this occurs is 2Gm/c2r, the 
Schwarzschild radius, often denoted by rs.



The Carter-Penrose Diagram
The problem with this diagram is that the coordinates break

down at r = rs. This is seen as the Schwarzschild metric
becomes singular:
ds2 = c2(1 – rs /r)dt2 – (1 – rs /r)-1dr2 – r2(dϑ2 – sin2ϑ dφ2).
There is also a singularity at r = 0.

 This singularity is just due to a bad choice of coordinates,
like the singularity at r = 0 in plane polar coordinates. The
solution is to change the coordinates so that this problem
does not arise.



The Carter-Penrose Diagram
The Plasma physicist, Martin Kruskal, developed null

coordinates that went through the horizon like a hot knife
through butter. Null coordinates are like the usual retarded
and advanced times, u = ct – r, v = ct + r, used for the
electromagnetic 4-vector potential.
For the Schwarzschild metric we define dr*=(1 – rs /r)-1dr and

use it in place of r. Just this change was introduced
independently by Eddington and Finkelstein (with a gap of
quarter of a century). These still leave the singularity intact.



The Carter-Penrose Diagram
Kruskal exponentiated and removed the singularity: U = e-u/rs , V = ev/rs , 

yielding, ds2 = (4rs
3 e-r/rs /r)dU dV – r2(dϑ2 – sin2ϑ dφ2), which is  

nonsingular. This is depicted in the adjoining 
Kruskal diagram.
The variables U and V have a doubly infinite 

range and so the diagram is not easy to see. 
Carter transformed the variables, so that they 
had a finite domain. Instead of retaining the 
null coordinates, we can go back to time and 
space coordinates. This gives the Carter-
Penrose-Walker diagram.



The Carter-Penrose Diagram
The Carter-Penrose-Walker diagram. Forget the interpretations given 

in this diagram. The top 
right corner is future
timelike infinity, I+, and 
the lower right corner 
past timelike infinity, I-. 
The extreme right 
corner is spacelike 
infinity, I0. The lines 
joining I- to I0and I0 to I+

are past and future null 
infinity, I- and I+.



The Carter-Penrose Diagram
The Carter-Penrose-Walker diagram:
I- is at t = -∞, r = 0; I+ is at t = +∞, r = 0 ; I0 is at t = 0, r = +∞; I- is at

r = -ct = ∞ and I+ is at r = ct = ∞.
The extreme right rhombus is the usual Universe outside the black

hole; the upper triangle is the black hole as seen by people falling in
in the future; and the lower triangle the black hole as it was in the
past. The million dollar question is “what is the rhombus on the left”?
This region had been required by Einstein and Rosen noting that all
geodesics (shortest paths) must either go on to infinity or end at a
singularity. This was not satisfied without this region.



The Carter-Penrose Diagram
In the diagram below the spacelike geodesics end up nowhere.

To complete it we need to put two 
of them together upside down. 



The Carter-Penrose Diagram
The joined diagram then becomes as 

seen here. The joining part is called 
the Einstein-Rosen bridge. The upper 
part corresponds to the spatial section 
of the usual Universe, and the lower 
part is called the maximal extension, 
and is the fourth region in the 
diagram.



The Carter-Penrose Diagram
If instead we  put them together as below and join the two ends at 

the bottom by a tunnel, we get a wormhole.

Remember that since Newton’s story of how 
he arrived at the theory of gravity was being 
hit on the head by an apple, and not by 
following up on Hook’s suggestion, gravity is associated with apples.



Ambiguity in Labeling CPW Diagram

Let us go back to the CPW Diagram and my
claim about an ambiguity in labeling it.
If the question of the significance of the
fourth region was a $ 1,000,000 question,
the $ 64,000,000 question is what do the
right vertices represent?



Ambiguity in Labeling CPW Diagram
When I was looking into this in 1988, it seemed to

me that there was no unique way to assign the right
labels to the left side. It depended on how I viewed
the spacetime. I tried looking up the relativist’s bible,
Gravitation by Misner, Thorne and Wheeler, but they
left it unlabeled. I went to the other relativist’s book
by Hawking and Ellis, but they left it out. I tried writing
to Wheeler and got no response. I tried writing to
Roger Penrose and got no response.



Ambiguity in Labeling CPW Diagram
There are two ways of looking at a spacetime:
one is from the point of view of the observer,
which is a local way; and the other is from the
point of view of the spacetime as a whole, which
is a global way. In both cases we have the whole
spacetime by the end of it, so there is no way, a
priori, to decide which to use.



Ambiguity in Labeling CPW Diagram
For the former, we need to define our preferred class

of observers and then take the collection of all of
them to give the spacetime. What I considered was
physically, the class of observers falling freely from
infinity, starting at rest. We have showed that this
corresponds to breaking the spacetime into a
sequence of spacelike hypersurfaces of zero intrinsic
curvature, i.e. with the 3-d Riemann curvature zero.



Ambiguity in Labeling CPW Diagram
For the latter I took the breakup by hypersurfaces
of constant mean extrinsic curvature. (The extrinsic
curvature tensor is Ki

j = –ni
;j, where n is the unit

normal vector to the hypersurface, and the mean
extrinsic curvature is the trace of this tensor,
K = –ni

;i.)



Ambiguity in Labeling CPW Diagram
For the former we get the picture built up from the hypersurfaces as

on the left. The left side of the diagram is missing. Now rotate it and
you get the left side. Adjoin and you get the whole diagram. Here the
arrow of time is upside down on the left of the CPW diagram. Neither
side talks to the other. Obviously, the upper left corner is I+ and the
lower left corner is I-, with the null lines reversed as well.

I I+ I-

Io Io

I I- I+



Ambiguity in Labeling CPW Diagram
Now consider the global way of defining our spacetime breakup into

space and time. This time was defined by Jim York and thus it is called
“York time”. A generic hypersurface is shown in the diagram below on
the left. The breakup obtained by my students A. Pervez, A.A. Siddiqui
and I is given on the right. Clearly, here the lower left corner is I- and
the upper I+. The arrow of time is up both sides. Here, I- is the lower
one and I+ is the upper one.



Ambiguity in Labeling CPW Diagram
The Diagrams: The left is a generic spacelike hypersurface and the 

right is the K-slicing (slices of constant K). 



Ambiguity in Labeling CPW Diagram
The choice is significant in attempts to do Quantum Field Theory in

the chosen background. When we take equal time commutation
relations, the choice of what the equal time taken is, is obviously of
vital importance. If we go with the local definition made global, as we
had done, half the diagram is missing and this will create spurious
fields. That was seen by Fulling using the Rindler wedge. His paper
was titled “Nonuniqueness of Canonical Field Quantization in
Riemannian Space-Time”. If, instead we take the global viewpoint, the
full maximally extended spacetime is taken. There is no missing part
leading to spurious additional fields.
Hawking took the former view.



Ambiguity in Labeling CPW Diagram
If, as I am implying, Hawking’s result is spurious,
how does it give the entropy? While Penrose
never gave the black hole entropy in terms of
the geometrical quantities found by Bekenstein
and Hawking, even his result is consistent with
that of the other two, that the entropy is
proportional to the black hole area.



Ambiguity in Labeling CPW Diagram

I am suggesting that the total result may
be that the contributions of all other fields
and quantum gravity exactly cancel out. In
that case, essentially, performing half the
calculation may provide us with the entropy
in a manner similar to that of getting the
string tension using D’Alembert’s principle.



Ambiguity in Labeling CPW Diagram

But why should it cancel instead of adding?
Well, this goes back to the observation by
Maxwell, that electromagnetic force, and
hence energy, goes in the opposite way to
gravity, as like electromagnetic charges
repel but gravitational “charges” attract.



Ambiguity in Labeling CPW Diagram

When I read Susskind’s fascinating book
The Black Hole War: My Battle with Stephen
Hawking to Make the World Safe for
Quantum Mechanics, I was thrilled with his
exposition of the problem and his proposed
resolution.



Ambiguity in Labeling CPW Diagram
I wrote to him, congratulating him on his superb

book and pointing out the error in the history I
mentioned earlier. At the end I remarked about my
work with Wheeler and how I thought I had an
alternate, nearly classical, resolution to the problem
of information loss and how Wheeler was not ready to
look at it because of his “religious belief” in a closed
Universe. He said I should revive the work –– so here
it is.



The Qadir-Wheeler Suture Model
Roger Penrose had conjectured that the black hole and final

singularity would be simultaneous, and if the Universe is flat or open,
then the conformally compactified version of the Universe would
have a simultaneous end with the black hole. He presented this via a
picture of a cave with stalactites.

Big Crunch



The Qadir-Wheeler Suture Model
When one says “simultaneous with”, one means
that both lie on the same spacelike hypersurface.
Thus one is claiming that a sequence of spacelike
hypersurfaces with the limit as the big crunch
will have the black hole singularity in the same
limit. This is clearly a global view and requires
the constant mean extrinsic curvature
hypersurfaces.



The Qadir-Wheeler Suture Model
As Wheeler liked to put

it, the sequence would fit
on to the singularity like a
glove with the black hole
singularities taking the
role of the fingers and
the glove fitting on to the
fingers.



The Qadir-Wheeler Suture Model
We tried a Schwarzschild lattice universe and proved the result,

but in that case the singularity never formed, so the point was
not proved. We tried putting a dust shell collapsing, starting at
the phase of maximum expansion and proved the result, but the
shell or cloud stuck out from the Universe at the Big Bang. Again
we had proved the result but not the point. It was the old
Goldilocks problem, the first was too “soft” and the second too
“hard”.
So then we went to the Baby Bear’s chair and porridge and bed.



The Qadir-Wheeler Suture Model
That was our suture model, which I now explain. We took

two closed Friedmann model universes of different densities
at the phase of maximum expansion. As such, they would
have different life-spans, the denser one evolving faster and
the rarer one slower. We cut out one part of the denser and
another piece of the rarer, so that the masses are equal, and
required that they fit together perfectly in the limit as we
approach the big bang. Now, as the universe parts evolve (at
different rates) a gap opens up, which is given the
Schwarzschild geometry.



The Qadir-Wheeler Suture Model
The metric for the closed Friedmann model is 

ds2 = c2dt2 – a2(t)[dχ2 + sin2χ(dϑ2 +sin2ϑdφ2)], (*)
which can be written as 
ds2 = c2a2(η) [dη2 – dχ2 – sin2χ(dϑ2 +sin2ϑdφ2)], (#)
where 
a(t) = (ao/2)(1 – cos η) ; t = (ao/2)(η – sin η) .
Thus 0 ≤ η ≤ 2π and so 0 ≤ a ≤ ao and 0 ≤ t ≤ aoπ. At t = aoπ/2 , a = ao

and at t = aoπ , a = 0. 



The Qadir-Wheeler Suture Model
This figure 

misleads. 
The three 
models 
start at 
the same 
Big Bang, 
but it is 
good 
enough 
otherwise. 



The Qadir-Wheeler Suture Model
The Schwarzschild region is the suture joining the two parts together.



The Qadir-Wheeler Suture Model
The resulting model is 

as shown in the diagram: 
Region A is the denser 
closed Friedman section; 
Region B, the rarer; and 
Region C the Schwarzschild 
suture. 
We can now follow its 

evolution from beginning to 
end.



The Qadir-Wheeler Suture Model
The corresponding CPW diagram is given below, in three parts.



The Qadir-Wheeler Suture Model
Dealing with a cut-and-paste model needs special care. Not only the

coordinates, but the geometry is different in each part. Further, the
usual procedure in General Relativity, of using analytic
transformations of the coordinates, to go from one domain to
another, is not available here. We have to use invariant geometric
measures at, and of, the boundary. Thus we need to measure the
circumference of the boundary on either side of the join of Regions
A &B and of Regions B & C. We need to state precisely what our
measure of mass is, and require that the mass, so defined, of Region
A is the same as the mass cut out from the universe model to get
Region C.



The Qadir-Wheeler Suture Model
The connection from the inner Friedmann, with variables (η, χ),

to the Schwarzschild, with variables (t, r), is given by Rk = aksinχk ,
where the subscript k is for “smaller”, if it takes the value s , or
“larger”, if it takes the value l and Rk is the r value at the boundary
and χk , the hyperspherical angle at the boundary. We then
require that the circumference of the boundary be the same at all
times, but has to be described in terms of the two different
coordinates. This yields the junction conditions at both the
boundaries to be
Rk = (ako/2) sin χk (1 – cos ηk). 



The Qadir-Wheeler Suture Model
The evolution of the hypersurfaces for how 

the Universe “size” behaves with K is shown 
in the adjoining diagram. The top one is at 
the phase of maximum expansion. As the inner 
universe contracts the outer will first expand, 
but by the time that the black hole has formed,
the outer one has started its collapse. As time 
goes on, both parts more or less disappear and 
only the Schwarzschild region contributes. The 
proper distance between poles increases till 
the phase of maximum expansion of the outer 
region, contracts and then, later, goes shooting 
off to infinity.



The Qadir-Wheeler Suture Model
Though people should know this, the popular
presentation of black holes as collapsing to a
point at the centre misleads them. It is well to
bear in mind what Wheeler said: “r = 0 is not
where the black hole collapses, it is when it
collapses”. It is the end of time and not space.
Spatially, the collapse is onto a line.



The Qadir-Wheeler Suture Model
The model is not limited to a single black hole but can

be used for a number of them of varying sizes.
Regardless of whether the model is closed, flat or
open (k=+1, 0, -1), the end of the Universe is
unchanged –– it is a mess of very thin corridors
connected at nodes. And the lengths of the corridors
go shooting off to infinity.
The Universe is not on a knife-edge (of k =0) in any

case!



The Nearly Classical Resolution
So what, if anything, does all this have to do with

information loss? Recall that Penrose had not limited his
conjecture to a closed model but included open and flat
models. I thought of what might happen for one of those
models and took my idea to Wheeler. But Wheeler
believed that the Universe had to be closed, because
only so could intelligences in the Universe create it by
observing its beginning. (This is tied up with his ideas of
observer participation for Quantum Theory.)



The Nearly Classical Resolution
The basis of Wheeler’s philosophy. 

The “U” represents the Universe, 
and time goes along the U from left 
to right. By the end of the Universe, 
the intelligences of the time will 
have observed its beginning, and by 
observer participation, thus created
the Universe. 
Discouraged, I left it alone. However, encouraged by Susskind, 

here is what I had come up with.



The Nearly Classical Resolution
If the end of the black hole is simultaneous with the end

of the Universe and the Universe never ends, neither will
the black hole, i.e. the black hole singularity never forms!
Since General Relativity is time symmetric, given enough

time, the incoming matter must come out, so that the
erstwhile black hole has become a white hole. The matter
that went in, will come out, but in reverse order. To see
why, think of the world lines of the matter traced out
time symmetrically –– and “the first shall be last”.



The Nearly Classical Resolution
A spacetime picture of the black hole

collapse converting to a white hole by
time reversal invariance symmetry. As
Wheeler had a religious belief in a closed
Universe, he was not ready to even
think of what would happen to a flat, or
open Universe.



The Nearly Classical Resolution
The weak link here is “given enough time”. How much time?

Must we wait for an infinite time? If not, how does it decide
to just turn over? To put it another way, what makes it
bounce? There must be some mechanism for it.
Here, without knowing it, In 1978 I used Bekenstein’s

argument. There will be a minimum size, i.e. volume, that
Heisenberg’s uncertainty principle will allow for any given
mass black hole. This is more or less what he used when he
got the entropy of the black hole.



The Nearly Classical Resolution
To proceed with this work for an open or flat Universe, it is

necessary to construct the open and flat models. It is not, a
priori, obvious that this can be done. After all, the black hole
collapses to the singularity in a finite proper time, while the
outside Universe never does so. The problem could lie with the
“religious belief” that a one dimensional line singularity is
physically attainable. Mathematically, we can try to simply
follow Penrose’s suggestion of using a transformation to bring
“infinity” to a finite place. The other problem could still arise,
of being able to manage the junction conditions adequately.



The Nearly Classical Resolution
The diagrams for the flat and open suture models are given below:



The Nearly Classical Resolution
The metric for the flat and open Friedmann Universe models

change the form of a and the dependence on χ in (*) and of t and
a on η in (#). For the flat case we get a ~ t2/3 or η2, and χ instead
of sin χ. Thus, 0 ≤ χ ≤ ∞ for this case. For the open we have
a(t) = (ao /2)(cosh η – 1) ; t = (ao /2)(sin η –η) and 0 ≤ χ ≤ ∞.
To avoid the problem of the infinite domain of χ and η, we

define new variables χʹ = tan-1χ and ηʹ = tan-1η, with finite
domains, – π/2 to π/2. We now get junction conditions as before,
but with the appropriate change of variables and functions.



The Nearly Classical Resolution
Aneela Naheed and I got the junction condition for the

open Universe as
Rl = (ako/2) sinh(tan χlʹ)[cosh(tan ηlʹ)–1].
Similarly, one gets the flat junction condition
Rl = (ako/2) tan2χlʹ tan2ηlʹ.
What remains is to proceed with the foliation for both

these models and then put in the Bekenstein condition
for the minimum “thickness” of the collapsing spheres,
after reaching which the model would “bounce” as
explained before.



Problem with 2-d Black Holes
While doing the computing for the foliation,
I had found that as one approached the
singularity two complications arose: greater
sensitivity leading to numerical instabilities;
and more and more steps of computation. I
first thought that the attempt to deal with
the former led to the latter problem.



Problem with 2-d Black Holes
I later realized that there was more going on
than merely the numerics. The proper length
along the hypersurface of the Schwarzschild
part was increasing as one approached the
singularity. While Wheeler was pleased to see
this feature of our model, he wanted to see it
proved analytically.



Problem with 2-d Black Holes
This was done much later. Atiya-tul Hussain and I
showed analytically that the proper length of the
corridor, ∆s ~ K1/3, as it opens. Then Azad Siddiqui
and I did the calculation for the pure Schwarzschild
black hole and showed that ∆s ~ K1/3ln K. Why the
difference? The extreme corners are cut out for the
suture model but incorporate the logarithmic
factor for the Schwarzschild.



Problem with 2-d Black Holes
How about the volume? As the circumference
shrinks with the York time by a factor
proportional to K, the volume, V ~ K-1. Thus we
do, indeed, get a collapse with time for the
suture model, despite the proper length
diverging.



Problem with 2-d Black Holes
For the Schwarzschild geometry, V ~ K-1ln K. The extra

factor comes because as we approach the line
singularity the proper distance between the part cut off
by the suture model and the corner of the Schwarzschild
singularity diverges logarithmically. The mild increase in
the proper volume due to the logarithm is totally
swamped by the sharp decrease due to the reduction of
the “circumference”, the S2 part.



Problem with 2-d Black Holes
So far no problem has appeared. However, Azad
and I were not satisfied with leaving well enough
alone and proceeded to consider any (n)
dimensional spacetimes. In that case as is easily
seen V ~ K1-2n/3ln K, since the “radial” parameter of
the black hole, r ~ K-1 and the hyper-volume of a
hyper-sphere in (n+1) dimensions ~ rn. Now
putting in the ∆s we get this result.



Problem with 2-d Black Holes
For n = 3, we get the previous result, for higher
n it goes more sharply to zero, for n = 2, we get V
going somewhat slowly to zero,
but for a 2-d spacetime, n = 1, V ~ K1/3ln K, and
the volume diverges!
There is no collapse but an explosion! 
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Problem with 2-d Black Holes
For n = 3, we get the previous result, for higher
n it goes more sharply to zero, for n = 2, we get V
going somewhat slowly to zero,
but for a 2-d spacetime, n = 1, V ~ K1/3ln K, and
the volume diverges!
There is no collapse but an explosion! 



Conclusion
By Penrose’s argument, we need that black
holes have entropy. Bekenstein provided a
formula for the black hole entropy, up to a
constant. Hawking provided a temperature
corresponding to the entropy and giving the
constant. However, I pointed out some
doubts about Hawking radiation neglecting
quantum gravity.



Conclusion
It is claimed that wrapping a 2-d black hole in a

super-membrane also gives the entropy. However, we
have seen that 2-d black holes are not black holes at
all –– instead of collapsing, they explode.
So, if we are left without the branes to get the

entropy, and we do not have a Hawking temperature
to give meaning to the entropy, can we talk of the
entropy and provide a formula for it?



Conclusion
If we have no dynamics, can we talk of string tension? Yes,

we can –– using D’ Alembert’s principle. Similarly, it could be
that the quantum gravity effect would exactly balance the
effect of quantizing other fields in the curved background.
But if we have no Hawking radiation, would it be impossible

for anything to come out of the black hole and the black hole
to disappear? Using the suture model for open and flat
Friedmann models, the black hole would become a white
hole.
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