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Abstract

We present several methods to compute the spatial entanglement entropy of a QFT state and

illustrate these methods with simple examples. We also discuss the connection between the entan-

glement entropy and conformal anomalies.
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Entanglement is one of the most fundamental properties of quantum mechanics. En-

tanglement is an interesting and useful concept in many different fields of physics, such

as quantum information, condensed matter physics, quantum field theory, and quantum

gravity. In these notes, our focus is merely on to study the entanglement between spatial

subregions in a state of a quantum field theory. We encourage the readers to consult [1] for

more details.

I. PRELIMINARIES

Here we present some definitions and formalisms that we will use to discuss the spatial

entanglement in quantum field theory in the rest of these notes.

A. Bipartite system and reduced state

Suppose we have a bipartite system (system A and system B). The Hilbert space of the

full system can be factorized as

H = HA ⊗HB . (1)

Let the full bipartite system is in a pure state |ψ〉. We can represent this state in terms

of a density matrix

ρ = |ψ〉〈ψ| . (2)

However, we do not need the full density matrix, ρ, to describe the state of one of the

subsystems, say system A. Consider an operator that only acts non-trivially on HA, such

as O = OA × 1B. The expectation value of this operator is then

tr (Oρ) = trA (OAρA) , (3)

where

ρA = trB ρ , (4)

is called the reduced state of system A. This reduced state is important in the cases where

we only have access to system A. The reduced state, ρB, for system B can be defined in a

similar way.
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B. Entanglement, entanglement entropy, and Renyi entropy

A pure state of a bipartite system is said to be a product state if it can be factorized as

|ψ〉 = |φA〉 ⊗ |χB〉 . (5)

On the other hand, states of a bipartite system that cannot be factorized in this way are

called entangled state. Note that a general pure entangled state can be expressed as

|ψ〉 =

NA∑
iA=1

NB∑
iB=1

ciA,iB |iA〉 ⊗ |iB〉 , (6)

where {|iA〉} and {|iB〉} are orthonormal basis forHA andHB respectively. Applying Eq. (4)

for this entangled state yields

ρA =

NA∑
iA=1

NA∑
jA=1

(
NB∑
iB=1

c∗iA,iBcjA,iB

)
|jA〉〈iA| , (7)

which is a mixed state. This gives us an alternative definition of the entangled state: A pure

state is entangled if the reduced state of any subsystem is a mixed state.

A useful measure of the entanglement of a pure state is the entanglement entropy. The

entanglement entropy of a subsystem A is defined as the von Neumann entropy of the

reduced state ρA. That is,

SA = −trA ρA log ρA . (8)

Note that SA vanishes if the reduced state ρA is a pure state, which would be the case if the

pure state |ψAB〉 is unentangled.

Another quantity closely related to the entanglement entropy, called nth Rényi entropy,

is defined as

S
(n)
A =

1

1− n
log trA ρ

n
A (9)

for integer n ≥ 2. Note that this quantity also vanishes if ρA is a pure state. Denoting the

ith eigenvalue of ρA by λi, we can write S
(n)
A as

S
(n)
A =

∑
i

λni . (10)

Since 0 < λi < 1, this sum is convergent and analytic for Re(n) > 1. Therefore, S
(n)
A can be

analytically continued for non-integer n, and the limit n → 1 reduces to the entanglement
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entropy. That is,

SA = lim
n→1

S
(n)
A , (11)

= −
(
∂

∂n
log trAρ

n
A

) ∣∣∣
n=1

. (12)

This analytic continuation is unique for a finite dimensional Hilbert space [1]. To show this,

first note that ∣∣∣trρnA∣∣∣ =
∣∣∣∑

i

λni

∣∣∣ ≤ 1 for Re(n) > 1 . (13)

Now let’s assume that there are two possible analytic continuation of S
(n)
A and let’s call them

F1(z) and F2(z). We define the difference of these functions as

G(z) = F1(z)− F2(z) , (14)

where G(z) is an analytic function in the region Re(z) > 1 and it must vanish when z is a

non-negative integer. Furthermore, Eq. (13) ensures that G(z) is a bounded function. Now,

Carlson’s theorem states that an analytic function which is bounded and vanishes at non-

negative integers must be identically zero. Hence, there is a unique analytic continuation of

S
(n)
A to non-integer n.

Exercise 1 Verify Eq. (11).

C. Modular Hamiltonian

Since a density matrix is positive and Hermitian operator with eigenvalues λ ≤ 1, we can

write any density matrix as

ρ ≡ e−K , (15)

where K is a positive and Hermitian operator, and it is called the modular Hamiltonian.

Now, suppose we have a bipartite system H = HA ⊗ HB is a pure state |Ψ〉. The

entanglement entropy of subsystem A is given by

SA =− trA ρA log ρA , (16)

= trA ρAKA , (17)

= trA

[(
trB|Ψ〉〈Ψ|

)
KA

]
. (18)
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Since KA acts trivially on HB, we can simplify the last result as

SA = trA∪B

[
|Ψ〉〈Ψ|KA

]
, (19)

= 〈Ψ|KA|Ψ〉 . (20)

This formula tells us that the entanglement entropy can be thought of as an expectation

value of a state-dependent Hermitian operator. This state-dependence ensures that the

entanglement entropy is a non-linear function of the state.

We will use Eq. (20) in Sec. (IV) to derive a perturbative formula for entanglement

entropy.

D. Some properties of the entanglement entropy

Here we list some of the interesting properties of the entanglement entropy.

1. In a pure state of a bipartite system,

SA = SB . (21)

This can be seen by noting that a general pure state in Eq. (6) can be written in the

Schmidt decomposition form

|ψ〉 =

NAB∑
i=1

λi |ui〉A ⊗ |ui〉B (22)

where NAB = min{NA, NB}, and where {|ui〉A} and {|ui〉B} are orthonormal basis of

HA and HB respectively.

2. The entanglement entropy of two combined systems is lesser than or equal to the sum

of the entanglement entropy of individual systems. This is called the subadditivity of

entanglement entropy,

SA∪B ≤ SA + SB . (23)

This inequality implies that the mutual information of systems A and B,

I(A : B) ≡ SA + SB − SA∪B , (24)

is non-negative.

6



3. A stronger version of subadditivity is called the strong subadditivity

SA∪B + SA∩B ≤ SA + SB . (25)

This inequality can also be written in terms of three subsystems:

SA∪B∪C + SB ≤ SA∪B + SB∪C . (26)

This form of writing the subadditivity is illuminating as it implies that the system

B cannot be purified by both systems A and C. This is called the monogamy of

entanglement.

The subadditivity and strong subadditivity are not easy to prove for a general quantum sys-

tem. However, we will prove these inequalities in the context of the AdS-CFT in Sec. (V B).

Exercise 2 Show that any pure state of the form Eq. (6) can be written in the form of

Eq. (22). Hint: Perform the singular-value decomposition of the matrix, ciA,iB , in Eq. (6).

II. ENTANGLEMENT ENTROPY IN QFT

The Hilbert space of a quantum field theory ‘lives’ on a Cauchy slice. In these notes, we

consider a QFT on a d-dimensional Minkowski space, R1,d−1. In this case, the Cauchy slice

is an equal-time slice which we denote by Σt . We introduce the coordinate system (t,x)

where t is a time coordinate and x are the spatial coordinates on Σt .

In the case of a scalar field theory, which we will focus on in this section, the Hilbert

space has a tensor product structure,

H =
⊗
x

Hx , (27)

where Hx is the Hilbert space of the degrees of freedom at point x on Σt. To see this, note

that a scalar field theory can be thought of a collection of coupled harmonic oscillators at

every point in space. Note that this tensor produce structure is not valid for gauge theories

due to the existence of non-local operators, such as Wilson loop, in the theory. We reiterate

that we do not consider gauge theories here, and we encourage interested readers to consult

[2, 3] for discussion of entanglement in gauge theories.
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A

Σt

Ā ∂A

H = HA ⊗HĀ

FIG. 1. A codimension-2 entangling surface, ∂A, splits a Cauchy slice, Σt, into two regions: A and

Ā. This provides a bipartite factorization of the Hilbert space: H = HA ⊗HĀ.

We can write the Hilbert space in Eq. (27) as a tensor product of two Hilbert spaces.

We take a codimension-2 spacelike surface that splits a Cauchy slice, Σt, into two regions.

We denote one of these region by A, the other region by Ā, and the codimension-2 splitting

surface, called entangling surface, by ∂A. See Fig. (1). Now we define HA and HĀ to be the

Hilbert spaces of the degrees of freedom in the region A and Ā respectively. That is,

HA =
⊗
x∈A

Hx , HĀ =
⊗
x∈Ā

Hx . (28)

With these definitions, Eq. (27) reduces to

H = HA ⊗HĀ . (29)

Our goal in this section is to show that a vacuum state of a QFT has spatial entanglement.

To do this, we calculate the entanglement entropy of a reduced state of region A in a simple

example in Sec. (II B). We find that the entanglement entropy for region A is not only non-

zero, it is also UV divergent. We discuss the origin and structure of these UV divergences

in Sec. (II D).

Finding the reduced density matrix and the entanglement entropy for region A (or Ā) is

very difficult for an arbitrary entangling surface, ∂A. For simplicity, we take the entangling

surface to be a codimension-2 infinite plane. To facilitate the discussion, we choose our

coordinates x = {x⊥,x‖} where x⊥ and x‖ are the coordinates perpendicular and parallel
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to the entangling surface respectively. More precisely, the entangling surface is given by

∂A : x⊥ = 0 , (30)

and the region A and Ā are half-spaces,

A : x⊥ > 0 , Ā : x⊥ < 0 . (31)

Note that the region A is precisely the region that is accessible to an observer with constant

acceleration (also known as the Rindler observer) in x⊥ direction. Therefore, we already

know that the reduced state of region A is a thermal state with respect to a boost operator.

That is, [4, 5]

ρA =
1

ZA
e−2πHA , (32)

where ZA = trAe
−2πHA is the normalization constant, and HA is the boost operator

HA =

∫
dd−2x‖

∫ ∞
0

dx⊥ x⊥ T00(t = 0, x⊥,x‖) . (33)

Since the reduced state in Eq. (32) is a mixed state, we deduce that the vacuum of a QFT is

entangled. In the next subsection, we discuss how to represent the density matrix of region

A as a path integral.

A. Path integral representation of a density matrix

Recall that the vacuum state of a Hamiltonian, H, up to a normalization constant can

be written as

|0〉 ∼ lim
β→∞

e−βH |χ〉 , (34)

where |χ〉 is a typical (or generic) state. We need to choose a basis to write the wave function

of this state. The convenient choice of a basis is the eigenbasis of our scalar field Φ(x). We

denote the eigenstates of Φ(x) by |φ〉 and the corresponding eigenvalues by φ(x). That is,

Φ(x)|φ〉 = φ(x)|φ〉 . (35)

The wave function of the vacuum state in this basis is

Ψ0[φ(x)] = 〈φ|0〉 , (36)

∼ lim
β→∞

〈φ|e−βH |χ〉 . (37)

9



τ = 0
φ(x)

FIG. 2. Pictorial representation of Eq. (38). To get the vacuum state wavefunction, we path

integrate over the lower half plane (shaded region) with boundary condition at τ = 0.

The matrix element in the last equation can be represented in terms of a Euclidean path

integral over the lower half plane . That is, we perform the path integral in the τ ≤ 0 region

of the Euclidean space, where τ is the Euclidean time.

Ψ0[φ(x)] ∼
∫
τ≤0

DΦ e−I[Φ] δ (Φ(τ = 0,x)− φ(x)) , (38)

where I[Φ] is the Euclidean action of our theory. See Fig. (2) for a pictorial representation

of this path integral.

Similarly, the adjoint of the vacuum state can be written as

Ψ∗0[φ(x)] = 〈0|φ〉 , (39)

∼ lim
β→∞

〈χ|e−βH |φ〉 , (40)

which can be written as a path integral over the upper half plane (τ ≥ 0 region of the

Euclidean space). That is,

Ψ∗0[φ(x)] ∼
∫
τ≥0

DΦ e−I[Φ] δ (Φ(τ = 0,x)− φ(x)) , (41)

Combining Eq. (38) and Eq. (41), we deduce the following path integral expression for

the matrix element of the vacuum density matrix

〈φ−|ρ|φ+〉 = 〈φ−|0〉〈0|φ+〉 , (42)

=
1

Z1

∫
Rd

DΦ e−I[Φ] δ
(
Φ(τ = 0−,x)− φ−(x)

)
δ
(
Φ(τ = 0+,x)− φ+(x)

)
, (43)
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τ = 0
φ+(x)

φ−(x)

FIG. 3. Pictorial representation of Eq. (43). Path integratal over the full Euclidean space with

boundary conditions imposed at τ = 0± gives us the matrix elements of the vacuum denisty matrix.

where the normalization constant, Z1, is the standard partition function of our theory. The

pictorial representation of this path integral is given in Fig. (3).

Next, we want to find the reduced density state for region A. From Eq. (4), we know that

we have to perform the partial trace over the Hilbert space of region Ā, HĀ. To perform

this analysis, we decompose φ(x) as

φ(x) = φA(x) + φĀ(x) , (44)

where φA(x) only has support in the region A whereas φĀ(x) only has support in the region

Ā. Now the reduced state for region A can be determined by integrating over all φĀ. That

is,

〈φA−|ρA|φA+〉 =

∫
DφĀ 〈φĀ;φA−|ρ|φĀ;φA+〉 , (45)

=
1

Z1

∫
Rd

DΦ e−I[Φ] δ
(
Φ(τ = 0−,x ∈ A)− φA−(x)

)
δ
(
Φ(τ = 0+,x ∈ A)− φA+(x)

)
.

(46)

Note that everything that we have done so far in this subsection is valid for any choice of

the entangling surface, ∂A. Let’s now focus on the case where the entangling surface to be a

codimension-2 infinite plane as in Eq. (30). The pictorial representation of the path integral

in Eq. (46) is then shown in Fig. (4).

In the next subsection, we (will) compute the entanglement entropy of this reduced state.
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τ = 0
φA+(x)

φA−(x)

FIG. 4. Pictorial representation of Eq. (46) for the case when A: x⊥ > 0.

Exercise 3 Evaluate the path integral in Eq. (38) and show that the vacuum wavefunction

for a free scalar field of mass m is

Ψ0[φ(x)] ∼ exp
(
− 1

2

∫
dd−1x

∫
dd−1y φ(x)K(x− y)φ(y)

)
, (47)

where

K(x− y) =
1

(2π)d−1

∫
dd−1p eip·(x−y)

√
p2 +m2 . (48)

B. Replica trick

The entanglement entropy of a reduced state is defined in Eq. (8). This involves a

logarithm of a density matrix which is not easy to compute. Therefore, we do not use

Eq. (8) to compute the entanglement entropy. Instead, we first compute the nth Rényi

entropy, S
(n)
A , defined in Eq. (9), analytically continue it for non-integer n, and then take

the limit n → 1 as suggested in Eq. (12). To calculate S
(n)
A , we first need to find trA ρ

n
A.

This trace can also be written in terms of a path integral. To see this, note that the tr ρnA

can be written as

tr ρnA =

∫ ( n∏
i

DφAi

)
〈φA1 |ρA |φA2 〉〈φA2 |ρA|φA3 〉...〈φAn−1|ρA|φAn 〉〈φAn |ρA|φA1 〉 . (49)

This can be represented by taking n-copies of the path integral in Fig. (4), and gluing them

together such that the τ = 0+ and x⊥ > 0 region on any copy is identified with the τ = 0−

and x⊥ > 0 region of the next copy. This means that trρnA can be computed as the path

12



integral on an n-fold cover of our original Euclidean spacetime. That is,

trAρ
n
A =

1

Zn
1

∫
Mn

DΦ e−In[Φ] , (50)

≡ Zn
Zn

1

, (51)

where we have denoted the replicated Euclidean space, that is n-fold cover of Rd, by Rd
n, and

the action of our theory on Rd
n by In[Φ]. Now using Eq. (12), we get that the entanglement

entropy of the reduced state of region A is

SA = − ∂

∂n

(
logZn − n logZ1

)∣∣∣
n=1

. (52)

Before we do an explicit computation of Zn, let’s discuss the topology of the replicated

space, Rd
n. Note that if we start from any point with coordinates τ = 0+ and x⊥ > 0 and

rotate in the τ − x⊥ plane around the entangling surface by angle 2π, we do not get to the

same point. Instead, we reach the corresponding point in the next copy. This means we

have to rotate by angle 2nπ around the entangling surface to get to the same point in Rd
n.

This implies that Rd
n is a direct product of the form

Rd
n = C2

n ×Rd−2 , (53)

where C2
n is a cone of angle deficit of 2π(1−n). Using the polar coordinates to parameterize

C2
n, the metric on Rd

n becomes

ds2
n = dr2 + r2dθ2 + dx2

‖ , θ ∼ θ + 2nπ . (54)

Exercise 4 Show that C2
n has a curvature singularity at the origin. In particular, show that

the Ricci scalar of the metric

ds2
C2
n

= dr2 + r2dθ2 , θ ∼ θ + 2nπ (55)

is given by

RC2
n

= − 4π(n− 1) δ2(x) , (56)

= − 2

(
1− 1

n

)
1

r
δ(r) . (57)

Hint: Start with the above metric and introduce new coordinates: α = θ/n and r =

ξn. In these new coordinates, the metric looks conformally flat. Now use the conformal

transformation of Ricci scalar to get the desired result.
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C. Example: entanglement entropy of a free scalar field theory

In this subsection, we study an explicit example to show how to use the formalism of

the last two subsections. Consider a free scalar field theory on a d > 3 dimensional flat

spacetime

I[Φ] =
1

2

∫
Rd
ddx (∂Φ)2 , (58)

=
1

2

∫
Rd
ddx Φ

(
−∂2

)
Φ . (59)

Now we define the action of this theory on a replicated space, Rd
n, by minimal coupling.

That is,

In[Φ] =
1

2

∫
Rdn

ddx
√
g Φ

(
−∇2

)
Φ , (60)

where ∇2 is a Laplacian on Rd
n. The partition function of this theory is given by

logZn = − 1

2
log det

(
−∇2

)
, (61)

= − 1

2
tr log

(
−∇2

)
. (62)

=
1

2

∫ ∞
δ2

ds

s
tr e−s(−∇

2) , (63)

where we have introduced a small length scale δ to regulate the divergences in this integral.

To proceed, we first need to diagonalize the Laplacian operator on Rd
n. We already know

that that the Laplacian on Rd−2 is diagonalized by plane waves. Now we only have to

diagonalize the Laplacian on C2
n. Let’s assume that

Fλ,q(r, θ) =
1√
2πn

eiqθ/n fλ(r) , for q ∈ Z , (64)

is an eigenfunction of −∇2
C2
n

with eigenvalue λ2. That is

−∇2
C2
n
Fλ,q(r, θ) =λ2Fλ,q(r, θ) , (65)

or equivalently

r2f ′′λ (r) + rf ′λ(r) +
(
λ2r2 − q2/n2

)
fλ(r) = 0 , (66)

where prime denotes the derivative with respect to r. This is a Bessel equation. Demanding

that the solutions of this equation are regular at r = 0, we get

fλ(r) =
√
λ J|q/n|(λr) . (67)
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Therefore,

χλ,q,p(r, θ,y) =
1

(2π)(d−2)/2

√
λ

2πn
eip·y eiqθ/n J|q/n|(λr) (68)

is an eigenfunction of the Laplacian on Rd
n with eigenvalue −(λ2 +p2). The overall normal-

ization ensures that these eigenfunctions are orthonormal. That is, [6]∫
dd−2y

∫ ∞
0

dr r

∫ 2πn

0

dθ χ∗λ,q,p(r, θ,y)χλ′,q′,p′(r, θ,y) = δqq′ δ(λ− λ′) δ(p− p′) . (69)

Now we write the trace in Eq. (63) as

tr e−s(−∇
2) =

∑
q

∫
dd−2p

∫ ∞
0

dλ

∫
dd−2y

∫ ∞
0

dr r

∫ 2πn

0

dθ (70)

× χ∗λ,q,p(r, θ,y) e−s(−∇
2) χλ,q,p(r, θ,y) , (71)

=
∑
q

∫ ∞
0

dr r

∫ ∞
0

dλ λ e−sλ
2 (
J|q/n|(λr)

)2
(72)

× 1

(2π)(d−2)

∫
dd−2y

∫
dd−2p e−sp

2

, (73)

=
A

(4πs)(d−2)

∑
q

∫ ∞
0

dr r

∫ ∞
0

dλ λ e−sλ
2 (
J|q/n|(λr)

)2
, (74)

where we have defined

A ≡
∫
dd−2y , (75)

as the area of the entangling surface. Now using the identity for Re(α) > −1∫ ∞
0

dλ λ e−sλ
2

(Jα(λr))2 =
1

2s
e−

r2

2s Iα

(
r2

2s

)
, (76)

we simplify Eq. (74) to get

tr e−s(−∇
2) =

2πA
(4πs)d/2

∑
q

∫ ∞
0

dr r e−
r2

2s I|q/n|

(
r2

2s

)
, (77)

=
A

(4πs)(d−2)/2

∑
q

∫ ∞
0

dz z e−z
2

I|q/n|
(
z2
)
. (78)

This integral diverges for large z. To regulate this IR divergence, we note that for sufficiently

large w, ∫ ∞
0

dz z−w e−z
2

I|q/n|
(
z2
)

= 2(w−3)/2 Γ(w/2)√
π

Γ((1− w)/2 + |q/n|)
Γ((1 + w)/2 + |q/n|)

. (79)

Taking the limit w → −1 yields∫ ∞
0

dz z e−z
2

I|q/n|
(
z2
)

= − 1

2
|q/n| . (80)
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With this, we write Eq. (78) as

tr e−s(−∇
2) = − A

(4πs)(d−2)/2

1

2

∑
q

|q/n| , (81)

=− A
(4πs)(d−2)/2

1

n
ζ(−1) , (82)

=
A

(4πs)(d−2)/2

1

12n
. (83)

Inserting this result in Eq. (63) yields

logZn =
A
εd−2

1

12n(d− 2)(4π)(d−2)/2
. (84)

Now using Eq. (52), we get

SA =
A
εd−2

1

6(d− 2)(4π)(d−2)/2
. (85)

Exercise 5 Repeat the analysis for a free scalar field theory of mass m.

D. Area law of the entanglement entropy

As we saw in the last subsection, the entanglement entropy of a half-space in a vacuum

state of a scalar field theory is a UV divergent quantity. Moreover, we found that the

divergent part of the entanglement entropy is proportional to the area of the entangling

surface. The proportionality of the UV divergences to the area of the entangling surface,

∂A, rather than the volume of the region A suggests that these divergences are due to the

infinite short distance entanglement between nearby modes residing on either side of the

entangling surface. In this sense, the UV divergences in the entanglement entropy are local

to the entangling surface.

The local nature of the UV divergences in the entanglement entropy has interesting

consequences. It implies that the leading UV divergence should scale as the area of the

entangling surface for any choice of the entangling surface. Furthermore, since any curved

spacetime locally looks like a flat spacetime, we deduce that the leading divergence in the

entanglement entropy for an arbitrary entangling surface in a (d ≥ 3)-dimensional curved

spacetime is of the form

S ∼ A
δd−2

+ ... , (86)
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where A is the area of the entangling surface, and δ is a short distance UV cutoff. The

proportionality constant depends on the details of the field theory, entangling surface, and

the choice of regularization scheme.

Even though entanglement entropy of any spatial region is a divergent quantity, the

mutual information of two non-adjacent regions, defined in Eq. (24), is a UV finite quantity.

The cancellation of the UV divergences in the mutual information is another important

result that follows from the locality of UV divergences.

III. ENTANGLEMENT ENTROPY IN (1 + 1)-DIMENSIONAL CFT

In this section, we focus on the (1 + 1)-dimensional conformal field theories. We show in

this section that the conformal invariance implies the entanglement entropy of some interval

of size ` is a universal result, and it only depends on the central charge. We further show

that this entanglement entropy is related to the conformal anomaly. Though we only show

this for (1 + 1)-dimensional CFTs, this connection between the entanglement entropy and

conformal anomalies is also true in higher dimensions.

We are interested in a CFT in R2. Let’s take subregion A to be a single interval, x1 ≤ x ≤

x2, of length ` ≡ |x2 − x1|. The entanglement entropy of this region, SA, can be computed

using the Replica trick. This involves defining the theory on a replicated space with conical

singularities on the end points of the region A, that is, x = x1 and x = x2. From Eq. (52),

we get

SA(`) = logZ1 − lim
n→1

∂

∂n
logZn . (87)

To find the dependence of SA on the size of the region A, we rescale ` by an infinitesimal

amount,

`→ eω ` ≈ (1 + ω) ` . (88)

This is equivalent to a constant infinitesimal Weyl scaling

gab → e2ω gab ≈ (1 + 2ω)gab . (89)

Since there is no other length scale in the theory, we deduce that

`
d

d`
SA(`) = 2

∫
d2x gab

δ

δgab
SA(`) . (90)
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Now note that

δ

δgab
logZn =

1

Zn

δ

δgab
Zn , (91)

=
1

Zn

δ

δgab

∫
R2
n

DΦ e−In[Φ;g] , (92)

=− 1

Zn

∫
R2
n

DΦ e−In[Φ;g] δ

δgab
In[Φ; g] , (93)

=− 1

Zn

∫
R2
n

DΦ e−In[Φ;g]

√
g

2
T ab , (94)

= −
√
g

2

〈
T ab
〉
R2
n

. (95)

We combine this result with Eq. (87) and insert it into Eq. (90) to get

`
d

d`
SA(`) = −

∫
R2

d2x
√
g
〈
T aa

〉
R2

+ lim
n→1

∂

∂n

∫
R2
n

d2x
√
g
〈
T aa

〉
R2
n

. (96)

Classically, the conformal invariance implies that the stress-tensor must be trace-less. How-

ever, there is an anomaly in quantum theory in curved spacetime. The conformal anomaly

in (1 + 1)-dimensions states that 〈
T aa

〉
= − c

24π
R , (97)

where R is the Ricci scalar of the background spacetime. Since R2 is Ricci flat, the first

term in Eq. (96) vanishes. The second term does not vanish due to the conical singularities

at the endpoints of region A in R2
n (see exercise (4). The Ricci scalar, in this case, is given

by (see Eq. (56))

Rn = − 4π(n− 1)
(
δ(τ)δ(x− x1) + δ(τ)δ(x− x2)

)
, (98)

With this result, Eq. (96) becomes

`
d

d`
SA(`) =

c

3
, (99)

which gives us

SA(`) =
c

3
log

`

δ
+ c1 , (100)

where δ is a UV cutoff, and c1 is a constant that depends on the CFT and on the regulariza-

tion scheme. Note that unlike c1, the coefficient of the logarithm term is fixed by conformal

invariance and hence, it is same for all CFTs.
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IV. PERTURBATIVE METHODS

The computation of the entanglement entropy for a general field theory is a difficult exer-

cise. In this section, we present a perturbative method of [7–9] to calculate the entanglement

entropy. Consider a field theory with action I0 and perturb it by a relevant operator, O.

Then the action of the perturbed theory is given by

Iλ = I0 + λO (101)

where

O =

∫
ddxO(x) , (102)

and λ is the coupling constant. Our goal in this section is to write the entanglement entropy

for any subregion as a power series in λ. That is,

SA(λ) = SA(0) + λ
dSA(λ)

dλ

∣∣∣
λ=0

+
λ2

2

d2SA(λ)

dλ2

∣∣∣
λ=0

+ .... . (103)

To do this, we use the modular Hamiltonian formula, Eq. (20), for the entanglement entropy.

Using Eq. (20), the entanglement entropy of any subregion A in a vacuum state of the

perturbed theory can be written as

SA(λ) = 〈KA(λ)〉λ , (104)

where 〈...〉λ = λ〈0|...|0〉λ, and KA(λ) is the modular Hamiltonian for the region A. We can

write this vacuum expectation value as

SA(λ) =
1

Zλ

∫
DΦ e−Iλ KA(λ) . (105)

We take the derivative of this equation to get

dSA(λ)

dλ
=

1

Zλ

∫
DΦ e−Iλ

[
− dIλ
dλ

KA(λ) +
dKA(λ)

dλ
− d logZλ

dλ
KA(λ)

]
, (106)

Now using
dIλ
dλ

= O , (107)

and
d logZλ
dλ

= −〈O〉λ , (108)
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we get

dSA(λ)

dλ
=

1

Zλ

∫
DΦ e−Iλ

[
−OKA(λ) +

dKA(λ)

dλ
+ 〈O〉λKA(λ)

]
, (109)

= − 〈OKA(λ)〉λ + 〈O〉λ 〈KA(λ)〉λ +

〈
dKA(λ)

dλ

〉
λ

, (110)

= − 〈OKA(λ)〉c,λ +

〈
dKA(λ)

dλ

〉
λ

. (111)

Note that the second term in Eq. (111) identically vanishes. This follows from the normal-

ization of the density matrix, trAρA = 1:〈
dKA(λ)

dλ

〉
λ

= trA∪Ā

[
ρ(λ)

dKA(λ)

dλ

]
, (112)

= trA

[
ρA(λ)

dKA(λ)

dλ

]
, (113)

= trA

[
e−KA(λ) dKA(λ)

dλ

]
, (114)

= − d

dλ
trAe

−KA(λ) , (115)

= 0 . (116)

Therefore, we get
dSA(λ)

dλ
= −〈OKA(λ)〉c,λ . (117)

Now taking the derivative of this equation and repeating the above analysis yield

d2SA(λ)

dλ2
= 〈OOKA(λ)〉c,λ −

〈
O dKA(λ)

dλ

〉
λ

. (118)

Note that these results are applicable for any spatial subregion A. However, the modular

Hamiltonian is not known for a general region. Hence, these formulas are not practical to

compute the entanglement entropy for an arbitrary region. Let’s now focus on the case

where A is a half-space as in Eq. (31). In this case, the modular Hamiltonian is related to

the boost operator (see Eq. (32)). More precisely,

KA(λ) = 2πHA(λ) + logZA(λ) , (119)

where HA is a boost operator and is given in Eq. (33):

HA(λ) =

∫
dd−2x⊥

∫ ∞
0

dx1 x1 T
(λ)
00 (t = 0, x1,x⊥) . (120)

Note that logZA(λ) is just a ‘number’ and it drops out from the connected correlation

functions in Eq. (117) and Eq. (118).
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A

ΣA

boundary

bulk

FIG. 5. The entanglement entropy of region A is given by the area of the codimension-2 minimal

area bulk surface, ΣA anchored at the endpoints of A.

Exercise 6 Use Eq. (117) to show that the entanglement entropy of a free scalar field of

mass m has a logarithmic divergence in d = 4. Find the coefficient of this term and compare

it with your result of exercise (5).

Exercise 7 Use Eq. (118) to show that the entanglement entropy of a free scalar field of

mass m has a logarithmic divergence in d = 4. Find the coefficient of this term.

V. HOLOGRAPHIC METHODS

The calculation of the entanglement entropy for a general entangling surface is not an

easy task. This involves first finding the reduced density matrix and then diagonalizing it.

For field theories with a classical holographic dual, the AdS-CFT correspondence provides

an alternative prescription. The holographic formula for the entanglement entropy of any

spatial region A, is [10]

SA =
A(ΣA)

4G
, (121)

where A(ΣA) is the area of a codimension-2 spacelike stationary area surface, ΣA, in the bulk

subject to the conditions that it is anchored on the boundary at the entangling surface, ∂A,

and that it is homologous to the boundary region A (See Fig. (5)). If there are several such

surfaces, we choose the one with the minimum area. The holographic formula, Eq. (121),

was first derived in [11] for time-independent states and then in [12] for general states.

In addition to providing an analytical tool to compute the entanglement entropy for a gen-

eral entangling surface, this holographic formula connects a quantum information quantity
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to a geometric quantity. This connection has led to many new insights about the emergence

of classical spacetime [13, 14]. Moreover, it has been shown that the holographic entangle-

ment entropy satisfies several inequalities that are not valid in general [15, 16]. Therefore,

these inequalities can be used to determine what CFTs have a classical gravitational bulk

dual.

In the special case when the QFT state is time-independent and the bulk geometry is

stationary, the stationary area surface ΣA becomes a minimal area surface on a bulk Cauchy

slice [17]. In this section, we will only focus on time-independent states.

A. Entanglement entropy of a single interval in (1 + 1) dimensions

Suppose we are in a vacuum state of a (1 + 1)-dimensional CFT in R2. Let’s take region

A to be an interval of size `,

A : −`/2 ≤ x ≤ `/2 , and t = 0 . (122)

To compute the entanglement entropy of region A, we need to find a spacelike codimension-2

surface of minimal area in AdS3 spacetime. The metric of AdS3 (in Poincaré coordinates)

is given by 1

ds2 =
1

z2

(
dz2 − dt2 + dx2

)
, (123)

where z = 0 is the conformal boundary. Note that a codimension-2 surface of the minimal

area in AdS3 is simply a geodesic. Furthermore, due to time translation invariance, the

surface ΣA must lie on a t = 0 slice in the bulk.

Now consider a general spacelike surface, γA, that lies in the t = 0 slice of AdS3 and is

anchored on the endpoints of A. This surface can be described using the parametric equation

γA : z = z(x) , and t = t(x) = 0 , (124)

with the boundary conditions

z(±`/2) = 0 . (125)

The induced metric on this surface is given by

ds2
γA

=
1

z2

(
1 + (z′(x))2

)
dx2 , (126)

1 We set LAdS = 1 .
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where prime denotes derivative with respect to z. The area of this surface is given by

A(γA) =

∫ `/2

−`/2
dx

1

z(x)

√
1 + (z′(x))2 . (127)

We need to find z(x) that minimizes this area functional. This is a standard calculus of vari-

ation problem. Since the ‘Lagrangian’ is independent of x, we deduce that the ‘Hamiltonian’

must be a constant. This gives us the following equation

z2
(
1 + (z′(x))2

)
= z2

∗ , (128)

where z∗ = z(0). The solution of this equation is

z(x) =
√
z2
∗ − x2 . (129)

Now imposing the boundary conditions in Eq. (125), we find that the minimal area surface

anchored at the endpoints of the region A is

ΣA : z =
√

(`/2)2 − x2 , (130)

and its area is given by

A(ΣA) =

∫ `/2

−`/2
dx

`/2

(`/2)2 − x2
, (131)

=

∫ `/2

0

dx
`

(`/2)2 − x2
, (132)

=

∫ `/2−δ

0

dx
1

`/2− x
+

∫ `/2

0

dx
1

`/2 + x
. (133)

Note that the first integral in the last expression diverges. To regulate this integral, we

introduce a cut-off surface near the boundary of AdS3 at z = δ. This means we only

integrate till x = `
2
− δ2

`
. With this, the above integral becomes

A(ΣA) =

∫ `/2−δ2/`

0

dx
1

`/2− x
+

∫ `/2

0

dx
1

`/2 + x
, (134)

= 2 log
`

δ
, (135)

The entanglement entropy of region A according to the holographic formula, Eq. (121), is

the given by

SA =
1

4G
log

`

δ
, (136)

=
c

3
log

`

δ
, (137)
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where we have used Brown-Henneaux [18] result

c =
3

2G
. (138)

This matches the field theory prediction in Eq. (100).

Before we proceed, we make two important observations:

1. The spacelike codimension-2 corresponding to the spatial region Ā is same as that

corresponding to the region A. This implies that

SA = SĀ , (139)

which is consistent with Eq. (21) for pure states.

2. In Sec. (II D), we saw that the UV divergences in the entanglement entropy are due

to the infinite entanglement between modes living near the entangling surface. In the

holographic setting, the UV divergences arise because the area of a surface diverges

near the boundary (z = 0) due to a conformal factor of 1/z2 in the metric. Since the

stationary area surface, ΣA, is anchored on the boundary at ∂A, the divergences in

the entanglement entropy must be proportional to the area of ∂A.

B. Holographic entanglement inequalities

Here, we show that the holographic entanglement entropy satisfies subadditivity, Eq. (23),

and strong subadditivity [19, 20], Eq. (25), and monogamy of mutual information [15]. For

simplicity, we will only focus on time-independent states of a (1 + 1)-dimensional CFTs.

1. Holographic proof of subadditivity

Now let’s consider two disjointed subregions, A1 : x1 ≤ x ≤ x2 and A2 : x3 ≤ x ≤ x4.

The entanglement entropy of the union of these subregions, SA1∪A2 , is given by the area

of the minimal area surface anchored on the endpoints on A1 and A2. However, there are

two possible minimal area surfaces as shown in Fig. (6). First, there is the union of the

bulk minimal surfaces associated to the two intervals [x1, x2] and [x3, x4] (shown as red

surfaces in Fig. (6)). Second, there is the union of the bulk minimal surfaces associated to
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x1 x2 x3 x4

ΣA1 ΣA2

ΣA3

ΣA4

A1 A2

FIG. 6. There are two candidates for minimal area surfaces corresponding to the boundary region

A1 ∪A2.

the two intervals [x1, x4] and [x2, x3] (shown as green surfaces in Fig. (6)). The holographic

formula dictates that we compute the total area in both cases and take the minimum value.

Therefore, we get

SA1∪A2 =
1

4G
× min

{
A(ΣA1) +A(ΣA2) , A(ΣA3) +A(ΣA4)

}
. (140)

In general, finding a minimum of two divergent quantities might not be a well-defined prob-

lem. Luckily in our case, the divergences in the area of the red surfaces are same as the

divergences in the area of the green surfaces. This follows from the facts that the divergences

in the area of these surfaces are determined by the geometry near the boundary, and the red

and green surfaces have the same boundary conditions. Now the above equation implies

SA1∪A2 ≤
A(ΣA1)

4G
+
A(ΣA2)

4G
, (141)

which is equivalent to

SA1∪A2 ≤ SA1 + SA2 . (142)

This is the subadditivity property of entanglement entropy, Eq. (23).

2. Holographic proof of strong subadditivity

Now let’s consider two overlapping subregions, A1 : x1 ≤ x ≤ x2 and A2 : x3 ≤ x ≤ x4,

as shown in Fig. (7). The minimal area surfaces corresponding to the boundary region A1

and A2 are shown as the red surfaces in Fig. (7), whereas the green surfaces denote the
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x1 x3 x2 x4

A1 A2

FIG. 7. Pictorial proof of the strong subadditivity.

minimal area surfaces corresponding to the boundary region A1 ∪A2 and A1 ∩A2. The sum

of the entanglement entropy of boundary regions A1 and A2 is given by the sum of the red

surfaces. That is,

SA1 + SA2 =
1

4G
A(red surfaces) . (143)

Note that the sum of the areas of the two red surfaces is same as the sum of the area of the

blue and orange surfaces in Fig. (7). Therefore

A(red surfaces) = A(blue surface) +A(orange surface) . (144)

Now observe that the blue surface is a bulk surface anchored on the endpoints on the region

A1∪A2, and its area must be greater than the area of the minimal area surface corresponding

to the region A1 ∪ A2. Similarly, the area of the orange surface must be greater than the

area of the minimal area surface corresponding to the region A1 ∩A2. This implies that the

sum of the area of the blue and the orange surfaces is greater than the sum of the green

surfaces. That is

A(blue surface) +A(orange surface) ≥ A(green surfaces) . (145)

The area of the green surfaces is proportional to the entanglement entropy of boundary

regions A1 ∪ A2 and A1 ∩ A2,

SA1∪A2 + SA1∩A2 =
1

4G
A(green surfaces) . (146)

Now we combine Eqs. (143)-(146) to get

SA1∪A2 + SA1∩A2 ≤ SA1 + SA2 . (147)

This is the strong subadditivity, Eq. (25).
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3. Monogamy of mutual information

Now we consider three intervals A, B, and C. Let’s, for simplicity, take these regions to

be adjacent. That is, A : x1 ≤ x ≤ x2, B : x2 ≤ x ≤ x3, and C : x3 ≤ x ≤ x4, as shown

in Fig. (8). The minimal area surfaces corresponding to the region A ∪ B and B ∪ C are

shown as red surfaces. Therefore,

SA∪B + SB∪C =
1

4G
A(red surfaces) . (148)

For the region A ∪ C, there are two candidates for the minimal area surfaces. These are

either green surfaces or the black surfaces. Therefore

SA∪C =
1

4G
× min

{
A(green surfaces) , A(black surfaces)

}
. (149)

We consider these two cases separately. Let the area of the black surfaces is lesser than the

area of the green surfaces. Then we get

SA∪C =
1

4G
A(black surfaces) , (150)

=SA + SC . (151)

With this result, we get

SA∪B + SB∪C + SA∪C =SA∪B + SB∪C + SA + SC , (152)

≥SA + SB + SC + SABC , (153)

where we have used the strong subadditivity, Eq. (25), in the last step.

Now let’s assume that the area of the green surfaces is lesser than the area of the black

surfaces. With this assumption, Eq. (149) becomes

SA∪C =
1

4G
A(green surfaces) , (154)

=SB + SABC . (155)

Adding this result to Eq. (148), we get

SA∪B + SB∪C + SA∪C =
1

4G
A(red surfaces) + SB + SABC . (156)

Note that the area of the red surfaces is same as the sum of the blue and the orange surface.

Therefore,

SA∪B + SB∪C + SA∪C =
1

4G
A(blue surface) +

1

4G
A(orange surface) + SB + SABC . (157)
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Now note that the blue surface is a bulk surface anchored at the endpoints of region A.

Therefore, its area must be greater than the area of a black surface anchored at the endpoints

of A. Similarly, the area of the orange surface must be greater than that of the black surface

anchored at the endpoints of C. Therefore, we get

SA∪B + SB∪C + SA∪C ≥
1

4G
A(black surfaces) + SB + SABC , (158)

=SA + SB + SC + SABC . (159)

Hence, we have derived an inequality

SA∪B + SB∪C + SA∪C ≥ SA + SB + SC + SABC , (160)

which can be written as

I(A : B ∪ C) ≥ I(A : B) + I(A : C) . (161)

This inequality is called monogamy of mutual information.

An interesting point about this holographic inequality is that it is not valid for a general

quantum system [? ]. Therefore, this inequality provides a necessary condition for a quantum

system to have a classical holographic dual.

Exercise 8 Show that the monogamy of mutual information still holds even when the regions

A, B, and C are not adjacent.

Exercise 9 Suppose a system of three qubits is in a mixed state

ρ =
1

2
|000〉〈000|+ 1

2
|111〉〈111| . (162)

Verify the that monogamy of mutual information is not satisfied in this state.

C. Bekenstein-Hawking entropy as thermal entropy

In this section, we assume that the boundary CFT is in a thermal state. The thermal

state in the boundary theory is dual to a black hole in the bulk. The thermal entropy of

the boundary state is defined as the von Neumann entropy of the thermal density matrix.

According to the holographic formula, Eq. (121), this entropy is related to the area of a
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x1 x2 x3 x4A CB
x1 x2 x3 x4A CB

FIG. 8. Pictorial proof of the monogamy of mutual information.

FIG. 9. The minimal area surface corresponding to the entire boundary region in the event horizon

of a black hole in the bulk.

surface homologous to the entire boundary. Note that the codimension-2 spacelike minimal

area surface homologous to the entire boundary is the event horizon. Therefore, Eq. (121)

reduces to

Sthermal =
A(BH)

4G
, (163)

which is simply the Bekenstein-Hawking entropy. This provides an interpretation of the

Bekenstein-Hawking entropy of a black hole in AdS spacetime as the thermal entropy of the

dual CFT state.
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