
Lecture II: Geodesics and Covariant Derivatives

We consider a parametrized surface r(u, v) given by two parameters

u and v.

For example,

r(θ, φ) = R
(

sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)
)

(1)

•
rθ

rφ

Figure 1: Tangent vectors in the coordinate directions spanning the tangent plane.

The tangent vectors at the point labelled by (u, v) are given by

ru =
∂r

∂u
rv =

∂r

∂v
(2)

The metric on the surface is given by considering the the infinitesimal



vector:

dr = r(u + du, v + dv)− r(u, v) (3)

= rudu + rvdv + 1
2ruudu

2 + ruvdudv + 1
2rvvdv

2 + · · · (4)

ds2 = dr · dr = g11du
2 + (g12 + g21)dudv + g22dv

2 (5)

gab =

(
g11 g12

g21 g22

)
=

(
ru · ru ru · rv
rv · ru rv · rv

)
Example: For a sphere the tangent vector in the direction of in-

creasing θ and φ are given by:

rθ =
∂r

∂θ
= R

(
cos(θ)cos(φ), cos(θ)sin(φ),−sin(θ)

)
(6)

rφ =
∂r

∂φ
= R

(
− sin(θ)sin(φ), sin(θ)cos(φ), 0

)

gab =

(
R2 0

0 R2sin2(θ)

)
(7)

ds2 = R2 dθ2 + R2sin2(θ)dφ2 (8)

Given any curve on the surface we can determine the length of the

curve using the metric. If the curve is given (u(t), v(t)) then

L(t1, t2) =

∫ t2

t1

f (t) dt (9)

f (t) =

√
gab
dua

dt

dub

dt



Let γ(t) be a curve on the surface parameterized by some parameter

t. If we denote the surface by S then:

γ : I 7→ S (10)

γ(t) = r(u(t), v(t))

t = γ′(t)

Figure 2: A curve on the surface S and the tangent vector to the curve at a point.

Then the tangent vector to the curve is given by the derivative of

γ(t) with respect to t (as we saw last time):

γ′(t) = ru
du

dt
+ rv

dv

dt
(11)

= u′(t) ru + v′(t)rv

t = γ′(t) ru = r1, rv = r2 (12)

t =
dua

dt
ra (13)

The tangent vector lives entirely in the tangent plane spanned by

r1 and r2. Now lets consider how this tangent vector changes as



we move along the curve. We consider the derivative of the tangent

vector (or the acceleration along the curve):

γ′′(t) = t′ (14)

γ′′(t) =
d2ua

dt2
ra +

dua

dt

(
rab

dub

dt

)
(15)

=
d2ua

dt2
ra +

dua

dt

dub

dt
rab

The first part is a vector which lies in the tangent plane but the

second part may not entirely lie in the tangent plane.

The vector rab is the derivative of the tangent vector ra with respect

to ub. Since r1, r2 together with the unit normal vector n (∼ r1×r2)

form a basis therefore:

rab = Γcabrc + Eab n (16)

The coefficients Γcab are called the Christoffel symbols,

rd · rab = Γcabgdc (17)

gderd · rab = Γcabδ
e
c = Γeab

We can obtain an expression for the Christoffel symbols entirely in

terms of the metric. Recall that

gab = ra · rb (18)

differentiating this with respect to uc we get (gab,c = ∂gab
∂uc )

gab,c = rac · rb + ra · rbc (19)

similarly

gac,b = rab · rc + ra · rcb (20)

gcb,a = rca · rb + rc · rba



then

gac,b + gcb,a − gab,c = rab · rc + ra · rcb + rca · rb + rc · rba
−(rac · rb + ra · rbc)

= 2rc · rab = 2Γdabgdc

Γdab = 1
2g

dc
(
gac,b + gcb,a − gab,c

)

Example

r(θ, φ) = R
(

sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)
)

(21)

rθ =
∂r

∂θ
= R

(
cos(θ)cos(φ), cos(θ)sin(φ),−sin(θ)

)
(22)

rφ =
∂r

∂φ
= R

(
− sin(θ)sin(φ), sin(θ)cos(φ), 0

)

rθθ =
∂rθ
∂θ

=
∂r

∂θ
= R

(
− sin(θ)cos(φ),−sin(θ)sin(φ),−cos(θ)

)
= −r

rφφ = −R
(

sin(θ)cos(φ), sin(θ)sin(φ), 0
)

n · rφφ = −R sin2(θ)

rθφ = rφθ = R
(
− cos(θ)sin(φ), cos(θ)cos(φ), 0

)
n · rθφ = 0

Γθθθ = Γφθθ = 0 (23)



Γθθφ = gdθrd · rθφ = gθθrθ · rθφ + gφθrφ · rθφ (24)

= R−2 × 0 + 0×R2 sin(θ)cos(θ) = 0

Γθφφ = gdθrd · rφφ = gθθrθ · rφφ + gφθrφ · rφφ (25)

= R−2 ×
(
−R2sin(θ)cos(θ)

)
= −sin(θ)cos(θ)

similarly

Γφθφ = Γφθφ = cot(θ) (26)

Thus the derivative of any tangent vector along a curve can be written

as:

γ
′′
(t) =

d2ua

dt2
ra +

dua

dt

dub

dt
rab (27)

=
d2ua

dt2
ra +

dua

dt

dub

dt

(
Γcabrc + Eabn

)
=
(d2ua

dt2
ra +

dua

dt

dub

dt
Γcabrc

)
︸ ︷︷ ︸

tangent to surface

+
dua

dt

dub

dt
Eab n︸ ︷︷ ︸

orthogonal to surface

The curve for which the tangent vector is constant with respect to

the surface i.e., the derivative of the tangent vector has no compo-

nent along the surface are called geodesics. They are the analogs of

straight lines in the plane. The curves of minimal length between

two points are also geodesics.

Recall that we defined the curvature of a space curve as the length

of the derivative of the tangent vector. In the above case we define



two different notions of curvature called the normal curvature and

the geodesic curvature.

κnormal = γ′′(t) · n =
dua

dt

dub

dt
Eab (28)

The geodesic curvature is the part coming from the tangential com-

ponent of γ′′(t). Suppose that the curve is parametrized by the arc

length. Then the acceleration is orthogonal to the tangent vector

since the tangent vector is a unit vector. Thus the tangential com-

ponent of the acceleration γ′′(t) is orthogonal to n and ra. Thus it is

along n×t. The geodesic curvature is then defined as the component

of the tangential part of γ′′(t) along n× γ′(t):

γ′′(t) = κgeodesic n× t + κnormal n (29)

If we consider the curve γ(t) just as a space curve then its curvature

κ is related to normal and geodesic curvature as:

κ2 = κ2
geodesic + κ2

normal (30)

The equation of the geodesic can be written as:

d2ua

dt2
ra +

dua

dt

dub

dt
Γcabrc = 0 (31)

d2ua

dt2
ra +

duc

dt

dub

dt
Γacbra = 0 (32)

(d2ua

dt2
+
duc

dt

dub

dt
Γacb

)
ra = 0 (33)



(d2ua

dt2
+
duc

dt

dub

dt
Γacb

)
= 0 (34)

We can define the covariant derivative along the some direction given

by a vector (V 1, V 2) as the directional directive projected to the

tangent plane and is defined as:

∇arb = Γcabrc (35)

V = V ara then

∇VW = V a∇aW = V a∇a(W
brb) = V a(W b

,arb + W bΓcabrc)

= V a
(
W b

,a + W cΓbca)rb (36)

∇aW
b = W b

,a + W cΓbca (37)

A geodesic is a curve for which the covariant derivative of the tangent

vector in the direction of the tangent vector is zero:

∇tt = 0 (38)

The covariant derivative is just the ordinary derivative along a vector

taken with respect to the manifold. Let C be a curve parametrized

by t with coordinates xa(t) and let A be a vector field defined in the

neighbourhood of the curve C. Then the derivative of A along the

curve C is by

dA

dt
=

d xa

dt

∂A(x)

∂xa
(39)

=
d xa

dt

∂Abeb
∂xa

=
d xa

dt

(
Ab

,aeb + Abeb,a

)
=

d xa

dt

(
Ab

,aeb + AbΓca bec

)



where we have as defined before Γcba such that

∂ eb
∂xa

= Γcabec . (40)

Since d xa

dt are the components of the tangent vector to the curve let

us denote them by ta,

dA

d t
= ta∇aA , (41)

∇aA = Ab
;aeb

taAb
;a are the components of the covariant derivative of A in the

direction of the tangent vector to the curve,

Ab
;a = Ab

,a + ΓbacA
c . (42)

If the vector field A is constant along the curve C then dA
dt = 0 which

implies

ta∇aA = 0 ⇔ ta
(
Ab

,a + ΓbacA
c
)

= 0 . (43)

Example 1: Geodesics on a sphere:

Consider the sphere with coordinates u1 = θ , u2 = ϕ. The sphere is

given by

r(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) . (44)

The metric on the sphere is given by

ds2 = dr · dr = dθ2 + sin2θ dϕ2 (45)



The non-zero christoffel symbols Γfab which we calculated earlier are:

Γ1
2 2 = −sin θ cos θ (46)

Γ2
1 2 = Γ1

2 1 = cot θ

Using the above in Eq.(34) we get

d2θ

ds2
− sin θ cos θ

(dϕ
ds

)2

= 0 ,
d2ϕ

ds2
+ 2cot θ

d θ

ds

dϕ

ds
= 0 (47)

The second equation can be written as

d

ds

(
sin2θ

dϕ

ds

)
= 0 ⇒ dϕ

ds
=

A

sin2 θ
. (48)

To solve the first equation we write θ as a function of ϕ (prime

denotes differentiation with respect to ϕ):

d θ

ds
= θ′

dϕ

ds
(49)

d2 θ

ds2
= θ′

d2 ϕ

ds2
+ θ′′

(dϕ
ds

)2

Then the first equation becomes(
θ′′ − (θ′)2 2 cot θ − sin θ cos θ

)( A

sin2 θ

)2

= 0 (50)

One solution is A = 0 which implies ϕ = constant and θ = α s+β.

These are the intersection of the sphere with the plane which contains

the z-axis. Other solutions are given by

θ′′ − (θ′)2 2 cot θ − sin θ cos θ = 0 (51)

(cosec2 θ θ′)′ = cot θ

(−cot θ)′′ = cot θ

cot θ = B cos(ϕ− ϕ0)



We can rearrange the above equation to

α sin θ cosϕ + β sin θ sinϕ + γ cos θ = 0 . (52)

which in terms of x, y, z is give by

αx + βy + γz = 0 , (53)

and represents a plane passing through the origin. Thus the geodesics

on the sphere are the great circles (intersection of the sphere with

the plane passing through the origin).

Example 2: Geodesics on the hyperbolic plane: The hy-

perbolic plane is the surface S = {(x, y) ∈ R2 | y > 0} with metric:

ds2 =
dx2 + dy2

y2
(54)

This is called the hyperbolic metric,

gab =

(
y−2 0

0 y−2

)
The inverse metric is given by:

gab =

(
y2 0

0 y2

)
(55)

The Christoffel symbols which are non-vanishing are given by:

Γ1
12 = Γ1

21 = 1
2g

11
(
g11,2

)
= −y−1 (56)

Γ2
11 = 1

2g
22
(
− g11,2

)
= y−1

Γ2
22 = 1

2g
22
(
g22,2

)
= −y−1



The geodesic equations are then given by:

d2x

ds2
− 2y−1

(dx
ds

)(dy
ds

)
= 0 (57)

d2y

ds2
+ y−1

(dx
ds

)2

− y−1
(dy
ds

)2

= 0

Using

dy

ds
=
dy

dx

dx

ds

d2y

ds2
=
dy

dx

d2x

ds2
+
d2y

dx2

(dx
ds

)2

(58)

we get

ẍ− 2y−1(ẋ)2 y′ = 0 where ẋ =
dx

ds
and y′ =

dy

dx
y′ẍ + y′′(ẋ)2 + y−1 (ẋ)2 − y−1(y′)2 ẋ2 = 0

The second becomes:

(ẋ)2
[
y′′ + y−1 − y−1 (y′)2 + 2y−1(y′)2

]
= 0

ẋ = 0 or y y′′ + 1 + (y′)2 = 0 (59)

The first equation represents the geodesics which are straight vertical

lines. The second equation can be solved by taking y′ = u and

obtaining:

y u
du

dy
+ 1 + u2 = 0 =⇒ dy

y
= − udu

1 + u2
(60)

ln(y) = −1
2ln(1 + u2) + c =⇒ y−2 = ec(1 + u2)



Define ec = A−2 then

dy

dx
= ±

√
A2 y−2 − 1 =⇒ dy√

A2 y−2 − 1
= ±dx (61)

ydy√
A2 − y2

= ±dx =⇒ −
√
A2 − y2 = ±x + B

(A2 − y2) = (x∓B)2 =⇒ (x−B)2 + y2 = A2

Thus these geodesics are semi-circles with origin on the x-axis.



Geodesic equation from variational principle

Let U be an open set and C ⊂ U a curve parametrized by t. Let xa be the coor-
dinates on U so that in these coordinates the curve is given by xa(t). The arc-length of the
curve between the point P and Q is given by

s =

∫ 1

0

√
gabẋaẋb dt , (62)

where t(P ) = 0 , t(Q) = 1 and dot denotes differentiation with respect to t. C is a geodesic
if the first order variation of the arc length vanishes for it,

δ s =

∫ 1

0

( ∂L
∂xc
− d

dt

∂L

∂ẋc

)
δxc dt = 0 , (63)

where L =
√
gabẋaẋb. This gives the Euler-Lagrange equations:

d

dt

∂ L

∂ ẋc
− ∂L

∂xc
= 0 . (64)

Using the L given above we get

d

dt

( 1

2
√
gabẋaẋb

gabδ
a
c ẋ

b + gabẋ
aδbc

)
− 1

2
√
gabẋaẋb

gab,cẋ
aẋb = 0

d

dt

( 1√
gabẋaẋb

gcbẋ
b
)
− 1

2
√
gabẋaẋb

gab,cẋ
aẋb = 0

where

gab,c :=
∂gab
∂xc

. (65)

Using the parametrization with arc-length rather than t gives (recall that d s
dt =

√
gabẋaẋb)

d

ds

(
gcb
d xb

ds

)
− 1

2
gab,c

d xa

ds

d xb

ds
= 0 . (66)



Simplifying the above gives,

gcb
d2 xb

ds2
+ gcb,e

d xe

ds

d xb

ds
− 1

2
gab,c

d xa

ds

d xb

ds
= 0

gcb
d2 xb

ds2
+

1

2
(gcb,e

d xe

ds

d xb

ds
+ gce,b

d xb

ds

d xe

ds
− gab,c

d xa

ds

d xb

ds
) = 0

gcb
d2 xb

ds2
+

1

2
(gcb,e + gce,b − geb,c)

d xb

ds

d xe

ds
= 0

gcb
d2 xb

ds2
+ Γbec

d xb

ds

d xe

ds
= 0 , (67)

where

Γebc =
1

2
(gcb,e + gce,b − geb,c) (68)

We denote with gbc the matrix inverse of the matrix gab so that

gcbg
cf = δfb . (69)

Then multiplying Eq.(67) by the inverse of gab we get,

gcf gcb
d2 xb

ds2
+ gcfΓbec

d xb

ds

d xe

ds
= 0

δfb
d2 xb

ds2
+ gcfΓbec

d xb

ds

d xe

ds
= 0

d2 xf

ds2
+ Γfbe

d xb

ds
d xe

ds = 0
. (70)

where the Christoffel symbols are given by:

Γfbe = gcfΓbec =
gcf

2
(gcb,e + gce,b − geb,c) (71)



Covariant derivative of a 1-form:
Given a one form ω = ωae

a we can let it act on a vector A to obtain the scalar ωaA
a whose

covariant derivative is just the ordinary derivative,

∇b(ωaAa) = (ωaA
a),b , (72)

Aa∇bωa + ωa∇bAa = ωa,bA
a + ωaA

a
,b

Aa∇bωa = ωa,bA
a + ωaA

a
,b − ωa(Aa,b + ΓabcA

c)

Aa∇bωa = Aa(ωa,b − Γcbaωc)

since this should be true for all A therefore we get

∇bωa = ωa,b − Γcbaωc (73)

Covariant derivative of a tensor:
Given a tensor Tab we can construct a scalar by letting it act on two vectors TabA

aBb so that

∇c(TabAaBb) = (TabA
aBb),c (74)

from which it follows that

∇cTab = Tab,c − ΓdcaTdb − ΓdcbTad (75)

similarly for a tensor with upper indices

∇cT ab = T ab,c + ΓacdT
db + ΓbcdT

ad (76)



Lecture III: Parallel Transport

We saw in the previous lecture geodesics are curves for which the co-

variant derivative of the tangent vector in the direction of the tangent

vector is zero. Which is to say that the tangent vector is constant

along the curve. Consider a curve γ(s) and its tangent vector V . We

can consider the equation

∇VW = 0 V a
(
W b

,a + W cΓbca

)
= 0 (77)

Given the vector W at an initial point p0 we can solve the above

equation to obtain the value of W at any point along the curve. The

vector W along the curve is then said to be parallel transported from

its initial value at p0. It is called parallel transport since the equation

guarantees that the vector W remains constant and therefore ”paral-

lel” to its initial value at p0. Parallel transport is a way of comparing

vectors at two different points on the manifold by bringing them to

the same point so that they lie in the same tangent plane where they

can be compared to see if they are parallel. For this reason it is

also called connection since it allows a vector to be moved from one

tangent space to another keeping it locally parallel to itself.

properties of the covariant derivative: The covariant

derivative is a linear operator and satisfies:

∇V

(
f W

)
= ∇V (f )W + f∇VW where (78)

∇V f = V a f,a f,a =
∂f

∂ua

The inner product between the two vectors remains invariant under

parallel transport. To see this consider a curve γ(s) and two vectors



A and B defined along the curve such

∇VA = ∇VB = 0 (79)

i.e., they are defined along the curve by parallel transporting them

from some initial value at p0. The vector V is the tangent vector

along the curve. Then the inner product between the two vectors is

a function defined along γ(s) and we can consider how this functions

changes as we move on the curve (V c = dUc

ds ):

d

ds

(
gabA

aBb
)

=
d gab
ds

AaBb + gab
dAa

ds
Bb + gabA

adB
b

ds
(80)

= gab,cV
cAaBb + gab

(
− AdΓadcV

c
)
Bb

+gabA
a
(
−BdΓbdcV

c
)

= V cAaBb
(
gab,c − gdbΓdac − gadΓdbc

)
using the definition of the Christoffel symbols in terms of the metric

Γdab = 1
2g

dc
(
gcb,a + gac,b − gab,c

)
(81)

gdcΓ
d
ab = 1

2

(
gcb,a + gac,b − gab,c

)
we get

d

ds

(
gabA

aBb
)

= AaBbV c
(
gab,c − gdbΓdac − gadΓdbc

)
(82)

= AaBbV c
(
gab,c − 1

2

[
gbc,a + gab,c − gac,b

]
−1

2

[
gac,b + gba,c − gbc,a

])
= 0

Thus the inner product between vectors do not change as they are

parallel transported from one point to another. So far we have only



talked about how the covariant derivative acts on vectors. It can,

however, be extended and make to act on tensors as well. The above

statement about inner product not changing then simply becomes

the statement that the metric as a tensor is covariantly constant i.e.,

∇a g = 0 (83)

where for p ∈ S we have g|p : TpS × TpS 7→ R such that

g|p
(
W1,W2

)
= gab(p)W a

1W
b
2 W1,W2 ∈ TpS . (84)

Example: Consider S2 with coordinates (θ, φ) and the usual met-

ric:

ds2 = dx2 + dy2 + dz2 (85)

= R2 dθ2 + R2 sin2(θ)dφ2

gab =

(
R2 0

0 R2sin2θ

)
gab =

(
R−2 0

0 1
R2sin2θ

)
The non-vanishing Christoffel symbols are:

Γ1
22 = −sin(θ)cos(θ) (86)

Γ2
12 = Γ2

21 = cot(θ)

Let us take a curve γ(s) given by

γ(s) = {(f1(s), f2(s)) ∈ S2} (87)

The equation we have to solve is:

∇tW = 0 (88)



subject to initial condition W (s = 0) = W0. The above equation in

component form is: becomes

dW b

ds
+ W cdu

a

ds
Γbac = 0 (89)

dW 1

ds
+ W cdu

a

ds
Γ1
ac = 0 (90)

dW 1

ds
+ W 2du

2

ds
Γ1

22 = 0

�
�

�

dW 1

ds − sin(θ)cos(θ)W 2dφ
ds = 0

dW 2

ds
+ W cdu

a

ds
Γ2
ac = 0 (91)

dW 2

ds
+ W 1du

2

ds
Γ2

12 + W 2du
1

ds
Γ2

21 = 0

�
�

�



dW 2

ds + cot(θ)
[
W 1dφ

ds + W 2dθ
ds

]
= 0

Let us first solve these equations for a curve going from (θ0, φ0) to

(θ0, φ0 + ∆φ) along constant θ0. In this case

dθ

ds
= 0

dφ

ds
=

1

Rsin(θ0)
(92)



(θ0, φ0) (θ0, φ0 + ∆φ)

(θ0 + ∆θ, φ0 + ∆φ)(θ0 + ∆θ, φ0)

→

↑↑

→

Figure 3: Parallel transporting a vector from (θ0, φ0) to (θ0+∆θ, φ0+∆φ) along two different
paths. The difference between the transported vectors at (θ0 + ∆θ, φ0 + ∆φ) is a measure of
curvature.

The equations become

dW 1

ds
− cos(θ0)R−1W 2 = 0 (93)

dW 2

ds
+

cot(θ0)

sin(θ0)
R−1W 1 = 0

Uncoupling the equations we get:

d2W a

ds2
+ R−2cot2(θ0)W a = 0 a = 1, 2 (94)

W 1(s) = W 2
0 sin(θ0) sin(ks) + W 1

0 cos(ks) k = cot(θ0)/R

W 2(s) = W 2
0 cos(ks)− W 1

0

sin(θ0)
sin(ks)



Since ∆φ << 1 therefore s
R = sin(θ0)∆φ << 1 and we get

W 1(θ0, φ0 + ∆φ) = W 1
0 + W 2

0 sin(θ0) cos(θ0)∆φ (95)

W 2(θ0, φ0 + ∆φ) = W 2
0 −W 1

0 cot(θ0)∆φ

(θ0, φ0) (θ0, φ0 + ∆φ)

→

Now lets transport this vector along constant φ curve from (θ0, φ0 +

∆φ) to (θ0 + ∆θ, φ + ∆φ). In this case we have:

dφ

ds
= 0

dθ

ds
= R−1 (96)

The equations in this case become:

dW 1

ds
= 0 (97)

dW 2

ds
+ cot(θ)W 2R−1 = 0 =⇒ dW 2

dθ
+ cot(θ)W 2 = 0

W 1 = W 1(θ0, φ0 + ∆φ) (98)

W 2 = W 2(θ0, φ0 + ∆φ)
sin(θ0)

sin(θ)



Thus we get

W 1(θ0 + ∆θ, φ0 + ∆φ) = W 1(θ0, φ0 + ∆φ) = W 1
0 + W 2

0 sin(θ0) cos(θ0)∆φ

W 2(θ0 + ∆θ, φ0 + ∆φ) = W 2(θ0, φ0 + ∆φ)
sin(θ0)

sin(θ0 + ∆θ)

= W 2(θ0, φ0 + ∆φ)
(

1− cot(θ0)∆θ
)

=
(
W 2

0 −W 1
0 cot(θ0)∆φ

)(
1− cot(θ0)∆θ

)
= W 2

0 (1− cot(θ0)∆θ)−
W 1

0 cot(θ0)∆φ(1− cot(θ0)∆θ)

(θ0 + ∆θ, φ0 + ∆φ)

(θ0, φ0 + ∆φ)

↑

Thus the above are the components of the vector which is first parallel

transported along the constant θ curve and then the constant φ curve.

Now lets try to parallel transport this vector W0 in the reverse order

by first taking it along the constant φ curve and then the constant θ

curve reaching the same point.

We already know how the components of the vector transform given



by Eq.(98):

W̃ 1(θ0 + ∆θ, φ0) = W 1
0 (99)

W̃ 2(θ0 + ∆θ, φ0) = W 2
0 (1− cot(θ0)∆θ)

(θ0, φ0)

(θ0 + ∆θ, φ0)

↑

Now transport this along the constant θ curve from (θ0 + ∆θ, φ0) to

(θ0 + ∆θ, φ0 + ∆0). The equation for this is given by Eq.(95):

W̃ 1(θ0 + ∆θ, φ0 + ∆φ) = W̃ 1(θ0 + ∆θ, φ0) (100)

+W̃ 2(θ0 + ∆θ, φ0)sin(θ0 + ∆θ) cos(θ0 + ∆θ)∆φ

= W 1
0 + W 2

0 ∆φ
(

sin(θ0)cos(θ0)− sin2(θ0)∆θ
)

W̃ 2(θ0 + ∆θ, φ0 + ∆φ) = W̃ 2((θ0 + ∆θ, φ0)

−W̃ 1((θ0 + ∆θ, φ0)cot(θ0 + ∆θ)∆φ

= W 2
0 (1− cot(θ0)∆θ)−W 1

0 cot(θ0)∆φ

+
W 1

0

sin2(θ0)
∆θ∆φ



(θ0 + ∆θ, φ0 + ∆φ)(θ0 + ∆θ, φ0) →

W̃ 1(θ0 + ∆θ, φ0 + ∆φ)−W 1(θ0 + ∆θ, φ0 + ∆φ) = −W 2
0 sin2(θ0) ∆θ∆φ

W̃ 2(θ0 + ∆θ, φ0 + ∆φ)−W 2(θ0 + ∆θ, φ0 + ∆φ) = W 1
0 ∆θ∆φ

A easier way to obtain the above result is to realize that the vectors

at near by points differs by covariant derivatives:

W (θ + ∆θ, φ + ∆φ) = W (θ, φ + ∆φ) + ∆θ∇θW (θ, φ + ∆φ)(101)

= W (θ, φ) + ∆φ∇φW (θ, φ) + ∆θ∇θW

+∆θ∆φ∇θ∇φW (θ, φ)

W̃ (θ + ∆θ, φ + ∆φ) = W̃ (θ + ∆θ, φ) + ∆φ∇φW̃ (θ + ∆θ, φ)

= W (θ, φ) + ∆φ∇φW (θ, φ) + ∆θ∇θW (θ, φ)

+∆θ∆φ∇θ∇φW (θ, φ)

Define

∆W = W̃ (θ + ∆θ, φ + ∆φ)−W (θ + ∆θ, φ + ∆φ)



then from Eq(101)

∆W = ∆θ∆φ [∇φ,∇θ]W = ∆θ∆φ[∇2,∇1]W (102)

The Riemann curvature tensor is defined as:

[∇c,∇d]W
a = Ra

bcdW
b (103)

Ra
bcd is called the Riemann curvature tensor and it can calculated

using the definition of the covariant derivative and is given by:

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓaceΓ

e
bd − ΓadeΓ

e
bc (104)

Rabcd = gaeR
e
bcd

The Riemann curvature tensor is antisymmetric in the first two and

the last two indices. For indices taking only two values we get:

R1111 = R1112 = R1121 = R1122 = R2211 = R2212 = R2221 = R2222 = 0

R1211 = R2111 = R1222 = R2122 = 0

The four non-vanishing components are:

R1212 = R2121 = −R1221 = −R2112 = R2 sin2(θ0) (105)

R1212 = g1eR
e
212 = g11R

1
212 = g11

(
Γ1

22,1 − Γ1
21,2 + Γ1

1fΓf22 − Γ1
2fΓf21

)
= g11

(
Γ1

22,1 − Γ1
22Γ2

21

)
= R2

(
(−sin(θ)cos(θ)),θ + sin(θ)cos(θ)cot(θ)

)
= R2

(
− cos2(θ) + sin2(θ) + cos2(θ)

)
= R2sin2(θ)



Thus the four non-vanishing components are:

R1212 = R2121 = −R1221 = −R2112 = R2 sin2(θ0) (106)

[∇2,∇1]W 1 = R1
b21W

b = g1aRab21W
b (107)

= g11R1b21W
b = g11R1221W

2 = −g11R1212W
2

= −R−2 ×R2sin2(θ0)W 2 = −sin2(θ0)W 2

[∇2,∇1]W 2 = R2
b21W

b = g2aRab21W
b

= g22R2b21W
b = g22R2121W

1 =
1

R2 sin2(θ0)
R2sin2(θ0)W 1

= W 1



Lecture IV: The Riemann Curvature Tensor

In the previous lecture we defined the Riemann curvature tensor

using the covariant derivative as:

[∇c,∇d]W
a = Ra

bcdW
b (108)

where

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓaceΓ

e
bd − ΓadeΓ

e
bc (109)

Rabcd = gaeR
e
bcd

Rp : TpM × TpM × TpM 7→ TpM (110)

Some comments about tangent vectors

Recall that we defined the tangent vectors given by r(u1, u2, · · · , un)

by

ea =
∂r

∂ua
a = 1, 2, · · · , n

This definition is not satisfactory since r is an externally defined

quantity and not something defined within the manifold. We instead

identity the vector with the derivative operator in that particular

direction. In Rn this is the correspondence:

v −→ v · ∇ = v1 ∂

∂x1
+ · · · + vn

∂

∂xn
(111)



Similarly we define the basis of ”tangent vectors” to be given by:

ea =
∂

∂ua
(112)

Given a curve γ : [−ε,+ε] 7→ M parametrized by t, the tangent

vector at a point p = γ(0) of the curve is given by:

d

dt
|t=0 =

dua

dt
|p

∂

∂ua
(113)

The numbers dua

dt |p are the components of the tangent vector at p.

Under a coordinate transformation ua 7→ ua
′
(u1, · · · , un) the basis

vectors transform in the following way:

ea′ =
∂

∂ua′
=
∂ua

∂ua′
∂

∂ua
(114)

= J a
a′ ea , J a

a′ =
∂ua

∂ua′

If W is a tangent vector then the components of W change under a

change in the coordinate system:

W = W aea = W a′ea′ = W a′J a
a′ ea (115)

W a = W a′J a
a′

�
�

�

W a′ = W aJ a′

a J a′
a = ∂ua

′

∂ua

Example: In R2 the relation between the Cartesian coordinates

(x, y) = (u1, u2) and the polar coordinates (r, θ) = (u1′, u2′) is given



by:

x = r cos(θ) , y = r sin(θ) (116)

r =
√
x2 + y2 , θ = tan−1(yx)

Jaa′ =
∂ua

∂ua′
=

(
∂x
∂r

∂y
∂r

∂x
∂θ

∂x
∂θ

)
=

(
cos(θ) sin(θ)

−r sin(θ) r cos(θ)

)
(117)

Ja
′

a =
∂ua

′

∂ua
=

(∂r
∂x

∂θ
∂x

∂r
∂y

∂θ
∂y

)
=

 x√
x2+y2

− y
x2+y2

y√
x2+y2

x
x2+y2



W = W 1e1 + W 2e2 = W 1′e1′ + W 2′e2′ (118)

W 1′ = W 1J1′
1 + W 2J1′

2

= W 1cos(θ) + W 2sin(θ)

W 2′ = W 1J2′
1 + W 2J2′

2

= W 1(−sin(θ)
r ) + W 2(cos(θ)

r )

Basis change

Recall that a linear transformation can be expressed as a matrix

(set of numbers) if a basis is chosen. Similarly, if we choose a basis of

TpM then the linear transformation Rp is given by the set of numbers

Ra
bcd(p). However, these numbers change under a change of basis of

TpM . Let U, V and W be three vectors in TpM . Rp(U, V,W ) is an



element of TpM :

Rp(U
beb, V

cec,W
ded) = U bV cW dRp(eb, ec, ed) (119)

= U bV cW dRa
bcd(p) ea

Thus defining the dual eaeb = δab where ea is the basis of the dual

space T ∗pM we have:

Ra
bcd(p) = ea︸︷︷︸

dual vector

Rp(eb, ec, ed)︸ ︷︷ ︸
vector

(120)

If we now change the basis ea 7→ ea′ = J b
a′eb then ea

′
= Ja

′
be

b such

that

δa
′
b′ = ea

′
eb′ = Ja

′
bJ

c
b′ e

bec = Ja
′
bJ

c
b′ δ

b
c = Ja

′
bJ

b
b′ (121)

Ra′
b′c′d′(p) = ea

′
Rp(eb′, ec′, ed′) (122)

= Ja
′
aJ

b
b′ J

c
c′ J

d
d′ R

a
bcd(p)

Covariant derivative of tensors

Recall that:

∇aeb = Γfabef (123)

Applying the covariant derivative to eaeb = δab we have:

∇c

(
eaeb

)
= 0 (124)(

∇ce
a
)
eb + ea

(
∇ceb

)
= 0(

∇ce
a
)
eb = −eaΓfcbef = −Γfcbδ

a
f = −Γacb



Thus we see that:

∇ce
a = −Γacbe

b (125)

Thus the covariant derivative of a dual vector W = Wbe
b is given by

∇aW =
(
Wb,a −WcΓ

c
ba

)
eb (126)

The covariant derivative of the Riemann curvature tensor is given

by:

∇eR = ∇a

(
Ra
bcdeae

beced
)

(127)

=
(
Ra
bcd,e + Rf

bcdΓ
a
ef −Ra

fcdΓ
f
eb −R

a
bfdΓ

f
ec −Ra

bcfΓfed

)
eae

beced

Best way to keep track of indices is the Penrose’s abstract index

notation (for more details see the book by Asghar Qadir).

Symmetries of the Riemann Curvature Tensor

Rabcd = −Rabdc = −Rbacd = Rcdab

Rabcd + Radbc + Racdb = 0

∇eRabcd +∇aRbecd +∇bReacd = 0

The number of independent components of Rabcd are:

n2(n2 − 1)

12



In four dimensions which will be of interest to us it has 20 compo-

nents.

Ricci Tensor and the Gaussian Curvature We can define

other geometric quantities using the Riemann tensor:

Ricci(U, V ) = ecR(U, ec, V ) (128)

Ricci(U, V ) = RabU
aV b Rab = Rcacb

The Ricci scalar is then defined as:

R = gabRab

Geodesic Deviation Equation

Consider two nearby geodescis and the vector A pointing from one

to the other. The acceleration of this vector is a measure of the cur-

vature of the manifold. This acceleration is related to the Riemann

curvature tensor.

A
t

∇t∇tA = R(t, t,A)(
∇t∇tA

)a
= Ra

bcd t
b tcAd



Einstein tensor

The Einstein tensor is defined as

Gab = Rab − 1
2Rgab

The most important property of this is that its divergence is zero:

∇aG
ab = 0 Gab = gacgbdGcd



Lecture V: The Geometry of Lorentz Transforma-

tions

• Speed of light is constant on all inertial reference frames.

OO′
−→v

O
O′

−→v
?

O O′
−→v

x2 − c2 t2 = 0 x′2 − c2 t′2 = 0 (129)

(
x′

c t′

)
=

(
a b

c d

)(
x

c t

)
(130)

= A

(
x

c t

)
(
a b

c d

)T (
1 0

0 −1

)(
a b

c d

)
=

(
1 0

0 −1

)
(131)



• det(A) = ±1

We consider the set of matrices which are connected with the identity

so that det(A) = 1.

(
a b

c d

)T (
1 0

0 −1

)
=

(
1 0

0 −1

)(
d −b
−c a

)
(132)(

a −c
b −d

)
=

(
d −b
c −a

)
=⇒ d = a , b = c

ad− bc = 1 =⇒ a2 − c2 = 1

(a, c) = (cosh(ψ) , sinh(ψ)) .

A =

(
cosh(ψ) sinh(ψ)

sinh(ψ) cosh(ψ)

)
. (133)

The transformations which connects the coordinates assigned by the

two observers is given by:

x′ = cosh(ψ)x + sinh(ψ) ct (134)

ct′ = sinh(ψ)x + cosh(ψ) ct

We know that the position of the observer O′ for the observer O is

given by x = vt. Since its own position for the observer O′ is given



by x′ = 0. Therefore:

0 = cosh(ψ) vt + sinh(ψ) ct =⇒ tanh(ψ) = −v
c (135)

cosh(ψ) =
1√

1− v2

c2

, sinh(ψ) = −
v
c√

1−v
2

c2

x′ =
1√

1− v2

c2

(
x− vt

)
, ct′ =

1√
1− v2

c2

(
ct− v

c x
)

In the limit c 7→ ∞ we recover the Galilean transformations and

Galilean addition of velocities.



Alternative Derivation

x

ct

L L

A

B

C

O2O1 O3

O′1 : x = vt (136)

O′2 : x = L+ vt (137)

O′3 : x = 2L+ vt. (138)

Event A: (ct, x) = (0, 0)
Event C: (ct1, x1) such that

x1 = L+ vt1, x1 = ct1 (139)

⇒ t1 =
L

c− v
, x1 =

cL

c− v
(140)

(ct1, x1) =

(
cL

c− v
,
cL

c− v

)
. (141)

Event B: (ct2, x2) such that

x2 = −ct2 + α, x2 = 2L+ vt (142)

where C lies on this line.

⇒ cL

c− v
= − cL

c− v
+ α (143)

⇒ α =
2cL

c− v
(144)

⇒ x2 = −ct2 +
2cL

c− v
(145)

x2 = 2L+ vt2 (146)

⇒ t2 =

(
2cL
c−v − 2L

)
c+ v

(147)

=
2Lv

c2 − v2
(148)

x2 = − 2vcL

c2 − v2
+

2cL

c− v
=
−2vcL+ 2c2L+ 2vcL

c2 − v2
(149)

=
2c2L

c2 − v2
, ct2 =

v

c
x2. (150)



Event A and B define the x′-axis of O′ and its equation is ct = v
cx.

Thus when x = vt, ⇒ x′ = 0, and when ct = v
cx ⇒ ct′ = 0.

⇒ x′ = γ1(x− vt) (151)

ct′ = γ2

(
ct− v

c
x

)
, (152)

where γ1 and γ2 are functions of v. Since

x = ct ⇒ x′ = ct′ (153){
ct′ = γ1(ct− vt)
ct′ = γ2(ct− vt)

}
γ1 = γ2 (154)

x′ = γ(x− vt) (155)

ct′ = γ

(
ct− v

c
x

)
γ1 = γ2 = γ. (156)

Introducing a third observer O′′ moving with speed u with respect to O′.

x′′ = γ(u)(x′ − ut′) (157)

ct′′ = γ(u)

(
ct′ − u

c
x′
)

(158)

x′′ = γ(u)

[
γ(v)(x− vt)− u

c
γ(v)

(
ct− v

c
x

)]
(159)

= γ(u)γ(v)

[
x− vt− u

c
ct+

uv

c2
x

]
(160)

= γ(u)γ(v)

[(
1 +

uv

c2

)
x− (u+ v)t

]
(161)

= γ(u)γ(v)

(
1 +

uv

c2

)
[x− wt]; w =

u+ v

1 + uv
c2

(162)

γ(w) = γ(u)γ(v)

(
1 +

uv

c2

)
. (163)

If u = −v ⇒ w = 0, γ(0) = 1.

⇒ γ(v)γ(v)

(
1− v2/c2

)
= 1 , γ(v) =

1√
1− v2/c2

(164)

Thus x′ =
x− vt√
1− v2/c2

, ct′ =
ct− v

cx√
1− v2/c2

(165)

and addition of velocities,

u, v → u+ v

1 + uv
c2

(166)

x′ = x−vt√
1− v2

c2

c t′ =
c t− v

c
x√

1− v2

c2

 Lorentz transformations (167)



Length Contraction:

An object with length `0 inO reference frame. This object is observed

by O′ and he measures both end points at the same time at t′ = 0.

t1 −
v

c2
x1 = 0 , t2 −

v

c2
x2 = 0 (168)

since x1 = 0 , x2 = `0 (169)

⇒ t1 = 0 , t2 =
v

c2
`0 (170)

x′2 − x′1 = γ(x2 − x1)− γv(t2 − t1) (171)

= γ`0 − `0γ
v2

c2
(172)

= γ`0

(
1− v2

c2

)
(173)

` = `0

√
1− v2

c2
. (174)

Time dilation:

Suppose observer O has a clock at x = 0. Two events happen at

time t1 and time t2. The difference for both is given by t2− t1. The

time difference as seen by O′ is

t′2 − t′1 = γ(t2 − t1)− γ v
c2

(x2 − x1) (175)

= γ(t2 − t1) (176)

=
(t2 − t1)√
1− v2/c2

> t2 − t1 (177)

Thus moving clock appears slow.



Spacetime distance:

−1 < v
c < 1 , ⇒ ∃ ψ such that tanhψ = v/c.

γ(v) =
1√

1− v2/c2
= coshψ(

ct′

x′

)
=

(
coshψ − sinhψ

− sinhψ coshψ

)(
ct

x

)
since cosh2 η − sinh2 η = 1 , ⇒ (ct′)2 − (x′)2 = (ct)2 − x2

Thus if we define the spacetime distance between two events with

coordinates (ct1, x1) and (c t2, x2) by

c2(t1 − t2)2 − (x1 − x2)2 (178)

then the two observers O and O′ will agree on this distance

c2(t1 − t2)2 − (x1 − x2)2 = c2(t′1 − t′2)2 − (x′1 − x′2)2 . (179)

x

ct

∆(c  t)
2

A B

C

(  x)∆
2

∆

(c  t
)

2 (  x
)

∆

2



Lorentz Group in Four Dimensions

The set of 4× 4 matrices which preserve the quadratic form

c2 t2 − x2 − y2 − z2

form a group known as the Lorentz group O(1, 3). Since

c2 t2 − x2 − y2 − z2 =
(
ct x y z

)


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



ct

x

y

z

 ,

therefore g ∈ O(1, 3) is such that

gTη g = η

Generators: The generators of SO(1, 3) are

J1 =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , J2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

 , J3 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0



K1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , K2 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , K3 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0





Rotations

Consider a vector in R3: r =

xy
z


Rotation preseves the length of the vector

r 7→ R r =

x′y′
z′

 x2 + y2 + z2 = x′2 + y′2 + z′2

RTR = I det(R) = 1

R =

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 ∈ SO(3)

Consider 2× 2 hermitian matrices:

H =

(
a b

c d

)
a, b, c, d ∈ C

H† := (HT ) = H =⇒ H =

(
α β + iγ

β − iγ δ

)
α, β, γ, δ ∈ R

H = α+δ
2

(
1 0

0 1

)
+ β

(
0 1

1 0

)
︸ ︷︷ ︸

σ1

+γ

(
0 i

−i 0

)
︸ ︷︷ ︸

σ2

+α−δ
2

(
1 0

0 −1

)
︸ ︷︷ ︸

σ3

H = {H is hermitian} ∼= R4



H0 = {H is hermitian and Tr(H) = 0} ∼= R3

Vectors in R3 ⇐⇒ Traceless Hermitian Matrices

r =

xy
z

⇐⇒ (
z x + iy

x− iy −z

)
= H

r2 = −det(H)

r 7→ R r ⇐⇒ H 7→ U H U−1

RTR = I det(R) = 1 ⇐⇒ U †U = I det(U) = 1

R ∈ SO(3) ⇐⇒ U ∈ SU(2)

SO(3) ∼= SU(2)/Z2

R(n, θ) 7→ U(n, θ) = exp
(
i
θ

2
n · ~σ

)

(
a b

−b∗ a∗
)
7→

 Re(a2 − b2) Im(a2 + b2) −2Re(a b)

−Im(a2 − b2) Re(a2 + b2) 2Im(a b)

2Re(ab∗) 2Im(ab∗) |a|2 − |b|2





H ∼= R4

r =


ct

x

y

z

 7→
(
ct + z x + iy

x− iy ct− z

)
= H = ct I + r · ~σ

−det(H) = −(c t)2 + x2 + y2 + z2

r 7→ L r such that − (c t)2 + x2 + y2 + z2 is unchanged

LT


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

L =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



L ∈ O(3, 1)

Elements of O(3, 1) which can be continuously connected with iden-

tity determinant 1 form a subgroup of O(3, 1)=SO+(3, 1)

• dimO(3, 1) = dimSO+(3, 1) = 6

In R4 there are six planes which can be rotated independently.



r 7→ L r L ∈ SO+(3, 1)

(
ct + z x + iy

x− iy ct− z

)
= H 7→ AH A†

• A is an arbitrary complex matrix with det(A) = 1

−det(H) 7→ − det(H)

L ∈ SO+(3, 1) A ∈ SL(2,C)

A = exp
(
i
θ

2
n · ~σ − ψ

2
u · ~σ

)
Rotation: θ,n Boost: ψ,u

(
a b

c d

)
7→(1

2(|a|2 + |b|2 + |c|2 + |d|2) −Re(ab∗ + cd∗) Im(a b∗ + cd∗) 1
2(|a|2 − |b|2 + c|2 − |d|2)

−Re(a∗c+ b∗d) Re(a∗d+ b∗c) −Im(a d∗ − bc∗) −Re(a∗c− b∗d)
Im(a∗c+ b∗d) −Im(a∗d+ b∗c) Re(ad∗ − bc∗) Im(a∗c− b∗d)

1
2(|a|2 + |b|2 − |c|2 − |d|2) −Re(ab∗ − cd∗) Im(ab∗ − cd∗) 1

2(|a|2 − |b|2 − |c|2 + |d|2)

)

The natural action of 2× 2 matrices is on a two dimensional vector

space: (
z1

z2

)
7→ A

(
z1

z2

)



These two dimensional complex vectors on which A acts linearly are

called spinors

• Spinors are two dimensional representation of SL(2,C). If you

think of

(
z1

z2

)
as projective coordinates on a sphere, then on z = z1

z2

the SL(2,C) acts as

z 7→ a z+b
c z+d ad− bc = 1 (180)



These generators satisfy the following commutation relations

[Ja, Jb] = εabcJc (181)

[Ka, Kb] = −εabcJc
[Ka, Jb] = εabcKc

If we define new generators Aa = Ka+iJa
2 and Ba = −Ka+iJa

2 then

[Aa, Ab] = iεabcAc , [Ba, Bb] = iεabcBc , [Aa, Bb] = 0 (182)

Thus the new generators Aa and Bb each satisfy the angular mo-

mentum commutation relation and commute with each other. Thus

we can use the result of the angular momentum commutation re-

lation derived earlier and label the states with two angular mo-

mentum quantum numbers, one corresponding to A2, A3 and other

corresponding to B2, B3, j1 and j2. Thus representations of the

Lorentz group are labeled by two quantum numbers (j1, j2) with

j1,2 ∈ {0, , 1
2, 1,

3
2, · · · }.

• (j1, j2) = (0, 0) is the Lorentz scalar

• (j1, j2) = (1
2, 0) is the chiral 2-component spinor

• (j1, j2) = (0, 1
2) is also chiral 2-component spinor

• (j1, j2) = (1
2,

1
2) is the 4-vector

• (j1, j2) = (1, 0) is the self-dual 2-form, F+
µ ν

• (j1, j2) = (0, 1) is the antiself-dual 2-form F−µ ν
• (j1, j2) = (1, 1) is the traceless part of the metric gµν

H0 Spin 0:

It is one dimensional with basis vector |0, 0〉. Thus the operators are



all numbers (1× 1 matrices):

Ĵ2 {|0,0〉−→
(

0
)
, Ĵa

{|0,0〉−→
(

0
)
, a = 1, 2, 3 . (183)

H1
2

Spin 1
2

It is two dimensional with basis vectors {|12,
1
2〉, |

1
2,−

1
2〉}. The oper-

ators are now 2× 2 matrices:

Ĵ2 {|12 ,
1
2〉,|

1
2 ,−

1
2〉}−→
(

1
2(1

2 + 1) 0

0 1
2(1

2 + 1)

)
(184)

Ĵ3

{|12 ,
1
2〉,|

1
2 ,−

1
2〉}−→
(

1
2 0

0 −1
2

)
=
σ3

2

Ĵ1

{|12 ,
1
2〉,|

1
2 ,−

1
2〉}−→
(

0 1

1 0

)
=
σ1

2
, Ĵ2

{|12 ,
1
2〉,|

1
2 ,−

1
2〉}−→
(

0 i

−i 0

)
=
σ2

2

In the problem set 1 we saw that the Pauli matrices satisfy the fol-

lowing commutation relations

[
σa
2
,
σb
2

] = iεabc
σc
2

H1 Spin 1

It is three dimensional with basis vectors {|1, 1〉, |1, 0〉, |1,−1〉}. The



operators are now 3× 3 matrices:

Ĵ2 {|1,1〉,|1,0〉,|1,−1〉}−→

1(1 + 1) 0 0

0 1(1 + 1) 0

0 0 1(1 + 1)

 (185)

Ĵ3
{|1,1〉,|1,0〉,|1,−1〉}−→

1 0 0

0 0 0

0 0 −1


Ĵ1

{|1,1〉,|1,0〉,|1,−1〉}−→ 1√
2

0 1 0

1 0 1

0 1 0

 , Ĵ2
{|1,1〉,|1,0〉,|1,−1〉}−→ 1√

2

0 −i 0

i 0 −i
0 i 0


H3

2
Spin 3

2

It is four dimensional with basis vectors {|32,
3
2〉, |

3
2,

1
2〉, |

3
2,−

1
2〉, |

3
2,

3
2}.



The operators are now 4× 4 matrices

Ĵ2 {|32 ,
3
2〉,|

3
2 ,

1
2〉,|

3
2 ,−

1
2〉,|

3
2 ,

3
2}−→


3
2(3

2 + 1) 0 0 0

0 3
2(3

2 + 1) 0 0

0 0 3
2(3

2 + 1) 0

0 0 0 3
2(3

2 + 1)



Ĵ3

{|32 ,
3
2〉,|

3
2 ,

1
2〉,|

3
2 ,−

1
2〉,|

3
2 ,

3
2}−→


3
2 0 0 0

0 1
2 0 0

0 0 −1
2 0

0 0 0 −3
2



Ĵ1

{|32 ,
3
2〉,|

3
2 ,

1
2〉,|

3
2 ,−

1
2〉,|

3
2 ,

3
2}−→ 1

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 ,

Ĵ2

{|32 ,
3
2〉,|

3
2 ,

1
2〉,|

3
2 ,−

1
2〉,|

3
2 ,

3
2}−→ 1

2


0 −i

√
3 0 0

i
√

3 0 −2i 0

0 2i 0 −i
√

3

0 0 i
√

3 0

 .

Notice that in each of the above case the matrices satisfy the same

commutation relation and that not more than one matrix is diagonal

(since otherwise commutation relation will not be satisfied).

Exercise: Construct Spin 2 matrices.

Spinor representation: Chiral, Dirac and Majorana

Chiral 2-component spinor (1
2, 0) transform in an irreducible repre-



sentation of the Lorentz group. Acting on this 2-component spinor

Aa =
σa

2
, Ba = 0 ⇒ Ja = −iσa

2
, Ka =

σa
2

ψL =

(
ψ1

ψ2

)
7→rotation e−iθ n̂·

~σ
2

(
ψ1

ψ2

)
(186)

ψL =

(
ψ1

ψ2

)
7→boost eβ n̂·

~σ
2

(
ψ1

ψ2

)
Chiral 2-component spinor (0, 1

2) also transform in an irreducible

representation of the Lorentz group. Acting on this 2-component

spinor

Aa = 0 , Ba =
σa

2
⇒ Ja = −iσa

2
, Ka = −σa

2

ψR =

(
ψ1

ψ2

)
7→rotation e−iθ n̂·

~σ
2

(
ψ1

ψ2

)
(187)

ψR =

(
ψ1

ψ2

)
7→boost e−β n̂·

~σ
2

(
ψ1

ψ2

)
The Dirac spinor ψD transforms in (1

2, 0) ⊕ (0, 1
2) representation of

the Lorentz group which is a reducible representation:

ψD =

(
ψL
ψR

)
7→rotation

(
e−iθ n̂·

~σ
2 0

0 e−iθ n̂·
~σ
2

)(
ψL
ψR

)
(188)

ψD =

(
ψL
ψR

)
7→boost

(
eβ n̂·

~σ
2 0

0 e−β n̂·
~σ
2

)(
ψL
ψR

)



Let us defines σµ = (1, ~σ) and σ̄µ = (1,−~σ). We will use the so

called chiral representation of the gamma matrices

γµ =

(
0 σµ

σ̄µ 0

)
(189)

Then

Sµ ν =
1

4
[γµ, γν]

satisfies the same commutation relation as the generators of the

Lorentz group:

[Sµ ν, Sρ σ] = Sµσηµ ρ + Sρ µην σ − Sν σηρ µ − Sρ νησ µ

The Lorentz transformation of the 4-component Dirac spinor with

parameters ωµ ν is then given by1

S = e
1
2ωµ νS

µ ν
(190)

Where ωµ ν is the ”angle” by which xµ − xν plane is rotated. Re-

member that for x0 − xi ”rotation” is a boost in the xi-direction (a

hyperbolic rotation).

Srot(~n) = e
1
2ωµ νS

µ ν
=

(
ei ~n·~σ/2 0

0 ei ~n·~σ/2

)
(191)

Sboost(~n) = e
1
2ωµ νS

µ ν
=

(
e~n·~σ/2 0

0 e−~n·~σ/2

)

1Dirac spinor is a 4-component object which transforms as ( 1
2 , 0)⊕ (0, 12 ). ωµ ν is the ”angle” of rotation

in the xµ − xν plane.


