Lecture II: Geodesics and Covariant Derivatives

We consider a parametrized surface r(u, v) given by two parameters
uw and v.

For example,

r(0, ) = R(smw)cos((p), sin(6)sin(¢), cos(e)) (1)

Figure 1: Tangent vectors in the coordinate directions spanning the tangent plane.

The tangent vectors at the point labelled by (u, v) are given by

or or
= u "= B )

The metric on the surface is given by considering the the infinitesimal

Ty



vector:

dr = r(u+du,v+ dv) — r(u,v) (3)
= rydu+ r,dv + iry,du’ + vy dudv + e, dv + - (4)

ds* = dr-dr = gidu® + (g2 + go1)dudv + goodv® (5)
Jab = (911 912> _ (ru "Iy Ty rv)
¢ g21 G922 Iy Ty Iy Ty
Example: For a sphere the tangent vector in the direction of in-
creasing ¢ and ¢ are given by:

ry = % = R(cos(@)cos(qb),COS(@)Sin(gb),—Sin(e)) (6)
r, = g—; = R( — sin(f)sin(¢), sin(#)cos(¢), 0)
R* 0
Jab = ( 0 RQSiHQ(G)) (7)
ds® = R*dO* + R*sin*(0)dg’ (8)

Given any curve on the surface we can determine the length of the
curve using the metric. If the curve is given (u(t),v(t)) then

1)

L(t1, 1) = f(t)dt (9)
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Let v(t) be a curve on the surface parameterized by some parameter
t. If we denote the surface by S then:

v: IS (10)

Figure 2: A curve on the surface S and the tangent vector to the curve at a point.

Then the tangent vector to the curve is given by the derivative of
v(t) with respect to t (as we saw last time):

du dv

= u'(t)r, + (),

t =~'(¢) r, =ry,r, =TI (12)
du
t = a 13

The tangent vector lives entirely in the tangent plane spanned by
ri1 and ry. Now lets consider how this tangent vector changes as



we move along the curve. We consider the derivative of the tangent
vector (or the acceleration along the curve):

7V(t) =t (14)
d?u® du® du?
”t - a —, \ltab 5 1
7 () dt2r+dt<rbdt> (15)
B d2u“r N duad_ubr
Tode v dat dt ™

The first part is a vector which lies in the tangent plane but the
second part may not entirely lie in the tangent plane.

The vector ry, is the derivative of the tangent vector r, with respect
to u®. Since ry, ro together with the unit normal vector n (~ ry X r9)
form a basis therefore:

rop=10r.+ Eyn (16)
The coefficients I', are called the Christoffel symbols,
- Tay = UgpGue (17)
g*rg Ty = Fapde =T

We can obtain an expression for the Christoffel symbols entirely in
terms of the metric. Recall that

Jap =Yg - Ty (18>
differentiating this with respect to u® we get (gap. = %%cb)
9ab,e = Yac " Th T Tg - Tpe (19)
similarly
Gach = Tab " Te T Tg - Tep (20)

Geba = Yea " T + T Ty,



then

Gac,b + 9eba — Gabe = Tab Yo + Ty Ty + T - Ty + T - Ty

_<rac Ty + Ty - rbc)
— 2rc Ty = 2nggdc

ng — %gdc <gac,b + Geba — gab,c)

Example
r(0,¢) = }%(Sh1(9)008(¢0,Sin(Q)shl@ﬁ),cos(H)) (21)
ry = gg R<Cos(9)cos(¢), cos(0)sin(¢), —sin(&)) (22)
ry = g; R(——&n@ﬁMﬂ¢%$nWﬁmd¢%O)
rgg = % = % = R( — sin(6)cos(¢), —sin(6)sin(¢), —008(9)>
Ty = —R(sin(@)cos((b),Sin(Q)sin((b),0)
n-ry, = —Rsin?(0)
gy = Tgp = }%( —-cos(&)sthﬁ),COS(Q)COSQﬁ),O)
n-ropy = 0
[y = F?@ =0 (23)



Fg¢ = gderd ‘Thy = 9991,9 " Top + g¢9r¢ “Too (24)
= R?x0+0 x R*sin(f)cos() = 0

0 do 00 0
F¢¢ = g Tq-Tpy =4 rg-r¢¢—|—g¢ Ty Ty (25)

= R*x (— RQSin(Q)COS(Q)) = —sin(#)cos ()
similarly

[, = g, = cot(0) (26)

Thus the derivative of any tangent vector along a curve can be written
as:

17 d2’U,a du“ dub
t — a - _ a 27
V) = Tt g (27)
d?u® du® du?

— T + T (ngrc + Eabn)
d*u® du® du® _, du® du®
\< az " g ar abrc) T g
tangent o surface orthogonaTto surface
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The curve for which the tangent vector is constant with respect to
the surface i.e., the derivative of the tangent vector has no compo-
nent along the surface are called geodesics. They are the analogs of
straight lines in the plane. The curves of minimal length between
two points are also geodesics.

Recall that we defined the curvature of a space curve as the length
of the derivative of the tangent vector. In the above case we define



two different notions of curvature called the normal curvature and
the geodesic curvature.
du® du®

Knormal = 7//(75) ‘= dt E Ea (28)

The geodesic curvature is the part coming from the tangential com-

ponent of v”(t). Suppose that the curve is parametrized by the arc
length. Then the acceleration is orthogonal to the tangent vector
since the tangent vector is a unit vector. Thus the tangential com-
ponent of the acceleration +"(t) is orthogonal to n and r,. Thus it is
along n x t. The geodesic curvature is then defined as the component
of the tangential part of 4" () along n x ~/(¢):

/7/,(t) = Rgeodesic I X t+ Rnormal 11 (29>

If we consider the curve () just as a space curve then its curvature
k is related to normal and geodesic curvature as:

K2 = Koeodesi ; (30)

geodesic + Rnormal

The equation of the geodesic can be written as:

d2u“ du du?

I, =0 31
a2 et g g et (31)
dzu“ du du?
- Ty, =0 32
a2 e g et (32)
d?u®  du dub

P ) ' 33
(dt2+dtdt cb (33)



(d2u“ du’ du® a) _0 (34)

+
ez dt dt
We can define the covariant derivative along the some direction given

by a vector (V1,V?) as the directional directive projected to the
tangent plane and is defined as:

varb = ngrc (35>
V = V%%, then
VW = VOV W = V'V, (W'r,) = V*(Wir, + W'Tr.)
= Ve (Wl Wl (36)
VW' =W+ WT?, (37)

A geodesic is a curve for which the covariant derivative of the tangent
vector in the direction of the tangent vector is zero:

Vit =0 (38)

The covariant derivative is just the ordinary derivative along a vector
taken with respect to the manifold. Let C' be a curve parametrized
by ¢t with coordinates x%(t) and let A be a vector field defined in the
neighbourhood of the curve C'. Then the derivative of A along the
curve C' is by

dA dz® 0A(x)

dt ~  dt 0z° (39)

dz®0A%,  da*
_ _ AV e+ A a)
dt ozt dt ( afh T A
dz® .



where we have as defined before I'}, such that

865

355@ — ngec . (40)
Since % are the components of the tangent vector to the curve let
us denote them by t¢,
dA
E — ta Va A y (41)
VeA=A e

te Ab;a are the components of the covariant derivative of A in the
direction of the tangent vector to the curve,

A=A +T) A (42)

If the vector field A is constant along the curve C' then % = (0 which
implies

t'V,A=0 < t° (Ab,a + FZCAC> = 0. (43)

Example 1: Geodesics on a sphere:
Consider the sphere with coordinates u! = 6, u? = ¢. The sphere is
given by

r(6, ) = (sinf cos g, sin O sin @, cos F) . (44)
The metric on the sphere is given by

ds* = dr - dr = df* + sin*0 d? (45)



The non-zero christoffel symbols sz which we calculated earlier are:
Iy, = —sinfcosf (46)

Using the above in Eq.(34) we get

0 d 2 d*p do do
@—SIHHCOSQ(%> :0, @—FQCOtQ%E:O (47)
The second equation can be written as
d (.o do d A
2 (2o _) ' - . 48
ds (sm ds = ds  sin’6 (48)

To solve the first equation we write 6 as a function of ¢ (prime
denotes differentiation with respect to ¢):

do d
=y 49
d- 0 ) d 2
R (9/ - 0// o
ds? ds? i ( ds )
Then the first equation becomes
. A N2
(9” — (0")?2cot O — Slﬂ@COS@) <sin2 @) =0 (50)

One solution is A = 0 which implies ¢ = constant and 6 = a s+ (.
These are the intersection of the sphere with the plane which contains
the z-axis. Other solutions are given by

0" — (0)*2cot® —sinfcosh =0 (51)

(cosec? 0 0') = cot. g

(—cot 8)" = cot 6

cot 0 = B cos(¢ — o)



We can rearrange the above equation to
asinf cos p + Bsinfsinp +ycosd = 0. (52)
which in terms of z,y, z is give by
ar + By +vz =0, (53)

and represents a plane passing through the origin. Thus the geodesics
on the sphere are the great circles (intersection of the sphere with
the plane passing through the origin).

Example 2: Geodesics on the hyperbolic plane: The hy-
perbolic plane is the surface S = {(z,y) € R* | y > 0} with metric:

2 _ dz?* + dy?
y?
This is called the hyperbolic metric,

—2
_ (v
Gab — < 0 yg)
The inverse metric is given by:
2
0
ab
= %!
The Christoffel symbols which are non-vanishing are given by:
[y, = Iy = 5911(911,2) =—y ! (56)
[, = %922( — 911,2) =y !

5 = 397 (922,2) =—y !

ds (54)



The geodesic equations are then given by:

d’x dx\ /dy
o (2)() - :
dés2 v ds/ \ds (57)
dy =~ _y(de dy)
—= —) — =0
d32+y (ds) v (ds
Using
@ _ dy dx d*y _ dy d*x N d*y (dx)2 (58)
ds dxds ds?> dxds®  dz?\ds
we get
d d
i—2y Y1)y =0 where & = d—i and vy’ = di
yi+y'(@) +y (@) —y () =0
The second becomes:
(&)° [y” +y =y W) 2y ()P =0
=0 or yy' +1+ () =0 (59)
The first equation represents the geodesics which are straight vertical
lines. The second equation can be solved by taking 3y’ = u and
obtaining:
du dy  udu
YU i + 1+’ iy (60)

In(y) = —in(l+u*) +¢c = y > =€ (1+u?)



Define e¢ = A2 then

dy

— =+A%y?2 -1 = = +d
dx VAT VATy2 1 )
d
jQy =ty = —/AT— 2=k + B
—y

(A=) = @F B} = (o= BP+yP= A

Thus these geodesics are semi-circles with origin on the x-axis.

-

(61)




GEODESIC EQUATION FROM VARIATIONAL PRINCIPLE

Let U be an open set and C C U a curve parametrized by t. Let z® be the coor-
dinates on U so that in these coordinates the curve is given by x%(t). The arc-length of the

curve between the point P and @ is given by

1
s = / vV gapoab dt
0

(62)

where t(P) =0, #(Q) = 1 and dot denotes differentiation with respect to t. C is a geodesic

if the first order variation of the arc length vanishes for it,

VoL d oL\, .
05 /0 (8330 dt 8i0>5$ 0,

where L = \/gapa®@?. This gives the Euler-Lagrange equations:

i oL B oL
dt 93¢ Oz¢

Using the L given above we get

d< 1 b .ach 1 -a b
— | ——— gu0%1” + g bx“é)—ig e =)
dt\2\/gupaoat " ¢ T o Jqmaaat T
d ( 1 ,b> 1 cazb _
— | g7 | — ——F— Yab,cl T =
W\ gud®® " ) 2/gadt
where
L 8gab
Jab,c = B .

. . . . . ds __
Using the parametrization with arc-length rather than ¢ gives (recall that %7 =

R =0.
e eb

’( dfr”) L, detda
ds 29ab’C ds ds

(63)




Simplifying the above gives,

where

d? xb dzedzb 1 dz® dxb
9ecb d82 + YGcb,e e GG - 5 gab,c%%
2zt 1 dxzt dab dzb dx¢
eb~a 5 + i(gcb,eg ds + Geeh g s
2zt 1 dxzb dx*
gcbm + §(gcb,e + YGeeb — geb,c)g 7
d? zb dab dze

I —
9cb ds2 + Lpec ds ds 0,

1
I‘ebc = E(gcb,e + YGee,b — geb,c)

_,, datda,
Gab,c e 0

We denote with ¢” the matrix inverse of the matrix g, so that

gchCf = 51{ .

Then multiplying Eq.(67) by the inverse of g, we get,

Cf d2 .CUb f dﬂ?b d
s/ d? zb diﬂ’daze
b g2 ds ds

d? zf f dzb dze _
ds? +Fbeﬁ ds =

where the Christoffel symbols are given by:

cf

g
FIJ:C = ng]-—‘b(iC = 7(901)76 + gC@,b —

bee™ls ds

xe

+ gcfrbec =0

geb,c)

(70)

(71)




Covariant derivative of a 1-form:
Given a one form w = w,e® we can let it act on a vector A to obtain the scalar w,A® whose
covariant derivative is just the ordinary derivative,

Vi(waA®) = (wad)p, (72)
A'NVywe + woVpA® = wa,bA“ + waA‘fb
AViyws = wepA* +we A%, — wa (A%, + T3 A°)
AVipw, A% (wqp — Tiwe)

since this should be true for all A therefore we get
Viwe = Wap — I'iawe (73)

Covariant derivative of a tensor:
Given a tensor T, we can construct a scalar by letting it act on two vectors T, A*B? so that

V(T A*BP) = (T, A*BY) . (74)
from which it follows that
VeTap = Tape — T8 Tap — T4 T (75)
similarly for a tensor with upper indices

VT =T% £ 02T + T T (76)




Lecture III: Parallel Transport

We saw in the previous lecture geodesics are curves for which the co-
variant derivative of the tangent vector in the direction of the tangent
vector is zero. Which is to say that the tangent vector is constant
along the curve. Consider a curve y(s) and its tangent vector V. We
can consider the equation

VW =0 V“(Wz + WCF2Q> — 0 (77)

Given the vector W at an initial point pg we can solve the above
equation to obtain the value of W at any point along the curve. The
vector W along the curve is then said to be parallel transported from
its initial value at pg. It is called parallel transport since the equation
guarantees that the vector W remains constant and therefore " paral-
lel” to its initial value at py. Parallel transport is a way of comparing
vectors at two different points on the manifold by bringing them to
the same point so that they lie in the same tangent plane where they
can be compared to see if they are parallel. For this reason it is
also called connection since it allows a vector to be moved from one
tangent space to another keeping it locally parallel to itself.

PROPERTIES OF THE COVARIANT DERIVATIVE: The covariant
derivative is a linear operator and satisfies:

Vv(f W) = V()W + VW where (78)

_of
s

Vv f = V'fa fa

The inner product between the two vectors remains invariant under
parallel transport. To see this consider a curve y(s) and two vectors



A and B defined along the curve such
VyA=VyB =0 (79)

i.e., they are defined along the curve by parallel transporting them
from some initial value at py. The vector V is the tangent vector
along the curve. Then the inner product between the two vectors is
a function defined along ~y(s) and we can consider how this functions

d_UC).

changes as we move on the curve (V¢ = “—):

a4
ds

dq, dB
<gabA“Bb) _ 89 papp (80)

ds ds ds
= gu VAB' + g - AdFdCVC) B’
+guA"( — BT V)
= V°A"B (gab,c — gl — gadF?fc)

using the definition of the Christoffel symbols in terms of the metric

F (gcb at Jach — gab,c) (81)

gdcrgb — %(ch,a + Gach — gab,c)
we get

d

p (gabAa Bb) = A'B'V* (gab,c — gl — gadFZlc> (82)
- AaBbVC (gab,c — % [gbc,a + Gab,c — gac,b:|

—% [gac,b + Gba,c — gbc’a]) =0

Thus the inner product between vectors do not change as they are
parallel transported from one point to another. So far we have only



talked about how the covariant derivative acts on vectors. It can,
however, be extended and make to act on tensors as well. The above
statement about inner product not changing then simply becomes
the statement that the metric as a tensor is covariantly constant i.e.,

Va g=10 (83)
where for p € S we have g|, : 1,5 x T,,S — R such that

g|p(W1, WQ) — Gu(p) W W, Wy € T,S. (34)

Example: Consider S? with coordinates (0, ¢) and the usual met-

T1cC:
ds* = dao* + dy* + dz* (85)
= R?d0* + R*sin*(0)dg’
~_ (R* 0 w (R? 0
Gab = 0 R2Sin29 g = 0 m

The non-vanishing Christoffel symbols are:

[y = —sin(f)cos(6) (86)
I'f, = I3 = cot(f)

Let us take a curve y(s) given by

v(s) = {(f1(s), fa(s)) € S*} (87)

The equation we have to solve is:

VW =0 (88)



subject to initial condition W (s = 0) = W;. The above equation in
component form is: becomes

dW? du
et

| 89
7 75 Lac (89)

dW1 du®
WC
als1 + d32
dW du
W?——T3 =0
ds * ds

la. =0 (90)

[d?gl — Sin(H)COS(Q)WZ% = Oj

dW* du®

Wi r2 =0 (91)

RILIE. du? du!
Tt Wld_i% n WQd—“SFg1 —0

[dd—VZQ + cot(6) [ng + WQ%] = OJ

Let us first solve these equations for a curve going from (6, ¢g) to
(6o, oo + Ag) along constant #y. In this case

o d¢ 1

~Z_0 _
ds ds  Rsin(fy)

(92)



Figure 3: Parallel transporting a vector from (6, ¢g) to (6p+ A6, po+A¢) along two different
paths. The difference between the transported vectors at (6y + A8, ¢y + A¢) is a measure of
curvature.

The equations become

d 1
ZZ — cos(B) R W2 = 0 (93)
dW?  cot(By) . 1.4
ds * sin(6y) =0
Uncoupling the equations we get:
d2 a
dI;Z + R™%cot?(0)W* = 0 a=1,2 (94)
Wl(s) = W¢sin(6p) sin(ks) + W cos(ks) k = cot(6y)/R
W

W2(s) = Wi cos(ks) — sin(ks)

Siﬂ(&o)



Since A¢ << 1 therefore & = sin(fy)A¢p << 1 and we get

W0y, po + Ag) = Wi+ Wsin(fy) cos(6g)A¢  (95)
W20y, po + Ag) = WE — Wy cot(bp)A¢

Now lets transport this vector along constant ¢ curve from (6, ¢g +

Ag) to (0 + Ab, ¢ + Ag). In this case we have:

dp o
=0 =R (96)

The equations in this case become:

dWw'? B
ds

0 (97)
2 W2
+cot(@) W R'=0 = 7

+cot() W? =0
ds

W = W0, ¢ + Ao) (98)

R sin(6y)
ws =Ww (00a ¢O + AQb) sm(@)




Thus we get
W0y + A0, o + Ag) = Wb, po + Ag) = Wy + Wi sin(y) cos(0) A

B sin(6y)
W20y + A0, o+ Ad) = W2(by, ¢ + Ad) sin(fy + A6)

= W0y, do + Ad) (1 - cot(eo)A9>
- (WOZ W cot(QO)Aqb) (1 - cot(e())Ae)

= WZ(1 — cot(fy)AG) —
Wy cot(8y) Ap(1 — cot(6y) AB)

\
\

(6o + AB, pp + Ao)

(80, 60+ A9)

Thus the above are the components of the vector which is first parallel
transported along the constant 6 curve and then the constant ¢ curve.
Now lets try to parallel transport this vector W), in the reverse order
by first taking it along the constant ¢ curve and then the constant 6
curve reaching the same point.

We already know how the components of the vector transform given



by Eq.(98):

W0y + A0, ¢g) = Wi (99)
W20y + A0, ) = WE(1 — cot(fy)AF)

(60 + Ae? ¢0>‘\\

Now transport this along the constant 6 curve from (6y + A6, ¢g) to
(6o + AB, ¢y + Ap). The equation for this is given by Eq.(95):

W0y + A0, ¢g + Ad) = W6y + Ab, ) (100)
+W2(0y + NG, ¢o)sin(By + AO) cos(By + AO)Ag
— W+ W2As (sm(eo)cos(eo) _ smz(eo)Ae)

W20+ A0, ¢y + Ag) = W2((6 + A0, ¢)
—WY((6y + 2B, dp)cot(6y + AG)Ag
= WZ(1 — cot(6y) AG) — Wycot(By) A

1
Wo AN

TS (6y)




(6o + AW, 925_02

(B0 + A8, oy + Ag)

W6y + A8, ¢y + Ag) — W6y + NG, ¢y + Ag) = —W2sin?(6y) AGAY

W2(60 + A, ¢ + Ag) — W26y + A8, o + Ap) = WL AGAS

A easier way to obtain the above result is to realize that the vectors
at near by points differs by covariant derivatives:

W+ A0, 0+ Ap) = W(,0+ Ap) + AOVW (0, ¢ + Agp)(101)
— W(0, ) + AV W (0, ¢) + AOV W
+A9A¢V9V¢W(9, o)
W0+ 20,6+ Ap) = W(0+AD,¢) + AV W (0 + A, )
= W(B,0) + AdV W (0, ¢) + AIVW (0, )
+AOAGV 4V W (0, ¢)

Define
AW =W(0+ A0, ¢+ Ad) — W (0 + A0, ¢+ Ag)



then from Eq(101)
AW = AGAG [V, VoW = AOAG[Vo, Vi IW  (102)

The Riemann curvature tensor is defined as:

V., VW = RE W (103)

r.q 1s called the Riemann curvature tensor and it can calculated

using the definition of the covariant derivative and is given by:

Rgcd — aCFZd o adrgc + FZ@ Zd T ?le Zc (104)

e
Rabcd = GaelYyq

The Riemann curvature tensor is antisymmetric in the first two and
the last two indices. For indices taking only two values we get:

Rllll - R1112 — R1121 — R1122 - R2211 — R2212 - R2221 — R2222 =0
R1211 - R2111 - R1222 - R2122 =0

The four non-vanishing components are:

Rig1y = Ro1o1 = —Rigo1 = — Roppp = R*sin(6)) (105)

Rig1p = 916R512 = 9113512 = g1 (F%m - F%l,Q + F%ngz - F%Fé)
= 91 (F%Q,l - F52F§1>
= R? ((—sin(@)cos(&)),g + sin(@)cos(@)cot(@))
= R2( — cos?(0) + sin*(0) + 0082(8)) = R%*in*(0)



Thus the four non-vanishing components are:

Rig1y = Ro1a1 = —Rigo1 = — Ropp = R*sin(6)) (106)

Vo, VIJW! = RL, WP = ¢g1Ryyo W (107)
= 911R1b21Wb = 911R1221W2 = —911 ]%1212‘/‘/2
— —R? x R%in*(0y) W? = —sin(6y) W?

Vo, Vi]W? = R%, W' = ¢** Ry W*

1
= ¢® Ryp W' = ¢ Ry W' =

R2 .2 0 Wl
R2sin®(6) sin”(6o)

- Wt



Lecture IV: The Riemann Curvature Tensor

In the previous lecture we defined the Riemann curvature tensor
using the covariant derivative as:

[Vc, Vd]Wa — adeWb (108)
where
RZC)LCd — acrgd o adrzc + Fge zd o Elle gc (109)

e
Rabcd = Gaelyq

R, T,M x T,M x T,M — T,M (110)

SOME COMMENTS ABOUT TANGENT VECTORS

Recall that we defined the tangent vectors given by r(u!, u?, - -+, u")
by
or
e, = a=1,2,---.,n
ou®

This definition is not satisfactory since r is an externally defined
quantity and not something defined within the manifold. We instead
identity the vector with the derivative operator in that particular
direction. In R" this is the correspondence:

0 0
VHV-V:fUl@—i—---jLU”% (111)



Similarly we define the basis of "tangent vectors” to be given by:

0
e, = 112
“ Ous (112)
Given a curve v : |—¢,+€| — M parametrized by t, the tangent
vector at a point p = v(0) of the curve is given by:
d du® 0
= — 113
2= = T e (113)

The numbers ddif\p are the components of the tangent vector at p.

. . ! .
Under a coordinate transformation u® — u® (ul,---  u") the basis

vectors transform in the following way:

5  ou O
— — 114
Cd = 9ud T gud ous , (114)
,U/CL
— JEL a, ? - /
o © “ Qus

If W is a tangent vector then the components of W change under a
change in the coordinate system:

W = Woe, =Wy =W"J e, (115)
W = WJ 4
Wl mwert g =g

Example: In R? the relation between the Cartesian coordinates

(z,y) = (u', u?) and the polar coordinates (r,0) = (u!, u?) is given



r = rcos(f), y=rsin(b) (116)

ou” gz 9y cos(d)  sin(0)
a __ — | or or ) —
Ju ou® (_ax —a“’) (—rsin(&) rcos(@)) (117)

0 00
a' or 09 - — =
i ou _ <%T %5) _ | Ve
a a or ov Yy x
Ju dy Oy V2 Ty
W = Wl 2 o 1 2/
= e+ Wiey=W-ey+ W ey (118)

W= wh + wrpy

= Wlcos(0) + Wsin(0)
w? = WF + wii?

_ Wl(—w>+W2(COS<9))

T T

BASIS CHANGE

Recall that a linear transformation can be expressed as a matrix
(set of numbers) if a basis is chosen. Similarly, if we choose a basis of
T, M then the linear transformation R, is given by the set of numbers

? 4(p). However, these numbers change under a change of basis of
T,M. Let U,V and W be three vectors in T,M. R,(U,V,W) is an



element of 7, M:
R,(Ue;, Ve, Wiy = UVWIR, (e, e.,eq)  (119)
= U'VW'R}.,(p) e,

Thus defining the dual e“e, = 0; where e” is the basis of the dual
space T,; M we have:

Rjq(p) = \ef./ Rp<657 €c, edz (120)

N
TV
vector

dual vector

If we now change the basis e, — ey = Ja?eb then e = .J ‘g/eb such
that

51)/ = eb/ = Ja Jb/e €c — Ja Jb 5b J%ljb/b (121)

Rg/lcld/(p) = e“/R (eb/ ecz,ed/) (122)
- Ja Jb JCJd/ Rbcd( )

COVARIANT DERIVATIVE OF TENSORS

Recall that:
Ve, =T e (123)

Applying the covariant derivative to e“e, = o) we have:

v. (e“eb) — 0 (124)

(Vce“> e, +e (Vceb) =0

(Vcea> e, = —e“ngef = —Ffbéj‘c = —



Thus we see that:

Ve =-T1%¢ (125)
Thus the covariant derivative of a dual vector W = W;e® is given by
VW = (Wb,a _ Wcrga) e’ (126)

The covariant derivative of the Riemann curvature tensor is given

by
V.R =V, <chdeaebeced> (127)

b c.d
- ( feie + R ef ~ ?Ccdrgb — Rl — Zchﬁd) e,e’e‘e

Best way to keep track of indices is the Penrose’s abstract index
notation (for more details see the book by Asghar Qadir).

SYMMETRIES OF THE RIEMANN CURVATURE TENSOR

Rabcd — _Rabdc — _Rbacd — Rcdab

Rabcd + Radbc T Racdb =0

veRabcd + vaRbecd + vaeacd =0

The number of independent components of R, are:
n?(n®* —1)
12




In four dimensions which will be of interest to us it has 20 compo-
nents.

Ricci TENSOR AND THE GAUSSIAN CURVATURE We can define
other geometric quantities using the Riemann tensor:

Ricci(U,V) = e'R(U, e, V) (128)

Ricci(U,V) = R U ayb Rap = Ry,

The Riccl scalar is then defined as:

R = gabRab

(GEODESIC DEVIATION EQUATION

Consider two nearby geodescis and the vector A pointing from one
to the other. The acceleration of this vector is a measure of the cur-
vature of the manifold. This acceleration is related to the Riemann

curvature tensor.

ViViA = R(t,t, A)

(Vtvt A)a = Ryt ¢ A




EINSTEIN TENSOR

The Einstein tensor is defined as
Guw = Ry — 5R gap
The most important property of this is that its divergence is zero:

vagab — 0 Gab _ gacgbdch



LECTURE V: THE GEOMETRY OF LORENTZ TRANSFORMA-
TIONS

e Speed of light is constant on all inertial reference frames.

.

392_62752:0 x’2—62t’2:0 (129)

() = o) () (130

I R 1 R G I



o det(A) = +1
We consider the set of matrices which are connected with the identity

so that det(A) = 1.

T
a b 1 0 1 0 d —b
Co) D=0y
a —c d —b
(b —d) = (c —a) — d=a, b=c
ad —bc=1 = a*—c* =1

(a,c) = (cosh(2)) , sinh(2))) .

~ (cosh(y)) sinh(y)
A= (sinhw) cosh(¢)) ' (133)

The transformations which connects the coordinates assigned by the
two observers is given by:

' = cosh(¢) z 4 sinh(y) ct (134)
ct' = sinh(¢) x + cosh() ct

We know that the position of the observer O for the observer O is
given by x = wt. Since its own position for the observer O is given



by 2’ = 0. Therefore:
cosh(t)) vt + sinh(¢)) ¢t == tanh(y)) = =2 (135)

0 =
1 | :
cosh(¢)) = —— sinh(¢) = — >
-5 -3
/I 1 ! 1 v
Tr = r—ot), c = ct— - x
v? 1_%

In the limit ¢ — oo we recover the Galilean transformations and

Galilean addition of velocities.



ALTERNATIVE DERIVATION

Event A:
Event C:

Event B:

where C' lies on this line.

1 N — Ut
05 : = L+t
05 : 2L + vt.
(ct,z) = (0,0)
(ct1, 1) such that
r1 = L+vty, z1=ch
L cL
=t = , X1 =
c—v c—v
cL cL
(ctl,xl) = ( s )
c—v c—v
(cta, x2) such that
Tr9 = —cto+a, xo=2L+ vt
cL cL
= = = + «
c—v c—v
2cL
=a =
c—v
2¢cL
= T9 = —cty+
c
To = 2L + vto
2cL
(% -2)
=ty =
c+wv
2Lv
T 22
2uel 2¢cL —2veL + 2¢2L + 2vel
€T = —_ _=
2 2 —1v2 c—w 2 — 2
2¢2L ’ v
= ——, cty=—x9.
c? — 2 27

(136)
(137)
(138)

(139)
(140)

(141)

(142)

(143)
(144)
(145)
(146)
(147)
(148)
(149)

(150)




Event A and B define the z'-axis of O" and its equation is ct = 2.
Thus when = vt, = 2’ =0, and when ct = %z = ' =0.
=12 = y(z—ot)
, v
ct = ylct— -z,
c
where v; and 7, are functions of v. Since
z=c =z =ct
ct’ = 1 (ct — vt) B
{ ct’ = ya(ct — vt) e
r = y(zx—ot)
, v
g = g e= M= =7

Introducing a third observer @” moving with speed u with respect to O'.

/"

' = 0

" = y(u)(a —ut)

U
ct' — =2
c

= ~(w)y() [g; — vt — et + Z;;x]

Thus ¥ =

and addition of velocities,

C

(1+Z;’>x— (u+v)t]
1

U+ v
14+ %

Lorentz transformations

(151)

(152)

(153)
(154)

(155)
(156)

(157)
(158)

(159)
(160)
(161)
(162)

(163)

(164)

(165)

(166)

(167)




Length Contraction:

An object with length £y in O reference frame. This object is observed
by O’ and he measures both end points at the same time at ¢’ = 0.

(Y (Y

tl — Eﬂfl = O, tQ — gﬂfg = (168)
since  x; = 0, @x9=1{ (169)
=1 = 0, to = %fo (170)
C
vy — a1 = (22 — 11) —Y0(t2 — 1) (171)
2
v
= by — KO’YE (172)
U2
V2

Time dilation:

Suppose observer O has a clock at x = 0. Two events happen at
time t1 and time ¢5. The difference for both is given by ¢, — ¢;. The
time difference as seen by O’ is

v
=t = 3t —t) = 75w — 1) (175)
= (2 — t1) (176)
to —t
= ( 2 1) > 19 — 1) (177)

Thus moving clock appears slow.



Spacetime distance:

1< <1, = 3 4 such that tanhy = v/c.

v(v) = ! = cosh ¥

V1—v?/c?

ct' \ cosht —sinh ct
(az’) B (—Sinhw cosh ¢ )(m)

since  cosh’n —sinh*n = 1, = (ct')? — (2/)? = (ct)* — 2

Thus if we define the spacetime distance between two events with
coordinates (ct1,x1) and (cty, o) by

C2(t1 - t2>2 — (5131 — 332)2 (178)
then the two observers O@ and O will agree on this distance

Gty — 1) — (v —x2)” = (t) — th)? — (2} — 5)*.  (179)

ct
A




LORENTZ GROUP IN FOUR DIMENSIONS

The set of 4 x 4 matrices which preserve the quadratic form

202 g2 g2 2

C

form a group known as the Lorentz group O(1,3). Since

I 0 0 O ct
0 -1 0 0 x
2 42 2 2 2
ctr—x"—y " —z2z=(ct x y 2 :
( )00—10 Y
0 0 0 -1 z

therefore g € O(1, 3) is such that
g'ng =1

Generators: The generators of SO(1, 3) are

(000 0 00 00 00 0 0
000 O 00 01 00 —1 0
=400t "2 oooo |l " o1 0 0
\0010 0 —1 00 00 0 0
(0100 0010 0001
1000 0000 0000
Ky = 0000 Ko = 1000 K= 0000
\oooo 0000 1000



ROTATIONS

x
Consider a vector in R%: r = | y

2z
Rotation preseves the length of the vector

/

X
r— Rr=[v 4P+ 2=y + 2P
Z/
R'R=1 det(R) = 1
* ok X
R=|x*x % x| € SO(3)
k ok %k

Consider 2 x 2 hermitian matrices:

H:(“ b) a,b,c,d € C
c d

H =(H)=H = H= (6 « 5”7) a,B,7,6 €R

—y 0
10 01 0 14 1 0
H =29 )
#(00) 2 (o) (5 )= (0 )
N — N — N —
o1 09 03

H = {H is hermitian} = R*



Ho = {H is hermitian and Tr(H) = 0} & R?

Vectors in R? <= Traceless Hermitian Matrices

r— Rr <+ H—UHU"!
R'R=1 det(R)=1 = U'U=1 det(U)=1
R € 50(3) = UeSU(_2)
SO(3) = SU(2)/Z;

0
R(n,0) —> U(n, ) = exp <z§ n- 5)

- Re(a* —b*) Im(a*+b*) —2Re(ab)
( ) — | —Im(a® —b*) Re(a®+b*) 2Im(ab)
2Re(ab*) 2Im(ab*) |al* —|b)?



ct
r=|" — (CtJr,Z x+2y)Hctl+r-5’
Y r—y ct—z
2
—det(H) = —(ct)? + 22 + 9> + 2°
r— Lr  such that — (ct)* +2° +y* + 2 is unchanged
—1 000 -1 000
0 100 0 100
L' L=
0 010 0 010
0 001 0 001
Le0O(3,1)

Elements of O(3, 1) which can be continuously connected with iden-
tity determinant 1 form a subgroup of O(3,1)=5S0,(3,1)

o dimO(3,1) = dim SO.(3,1) = 6

In R* there are six planes which can be rotated independently.



r— Lr L e SOL(3,1)

(ct+z x+iy)_H i AH A

rT—1y ct— =z

e A is an arbitrary complex matrix with det(A) =1
—det(H) o — det(H)
L e SO.(3,1) Ae SL(2,C)

A:exp(ign-ﬁ—%u-5>

Rotation: 6, n Boost: ¢, u

()~

s(lal + o + e +]d*)  —Re(ab* +cd*)  Im(ab* +cd*)  5(lal* = [b]* + cf* — [d]?)
—Re(a*c+ b*d) Re(a*d+b*c) —Im(ad* — bc*) —Re(a*c — b*d)

N |—

Im(a*c+ b*d) —Im(a*d+b*c) Re(ad* — bc*) Im(a*c—b*d)
s(laf® + b —|c[* = |d]*) —Re(ab* —cd*)  Im(ab* —cd*)  3(|a]* = [o]* —|c|* +|d]?)

The natural action of 2 x 2 matrices is on a two dimensional vector

)= a0

space:



These two dimensional complex vectors on which A acts linearly are
called spinors

e Spinors are two dimensional representation of SL(2,C). If you

think of (
<2

the SL(2,C) acts as

21 21

) as projective coordinates on a sphere, then on z = >

z > 22 ad — bc = 1 (180)




These generators satisfy the following commutation relations

[Jos Jo] = €apete (181)
[Kaa Kb] — _Gachc
[Kaa Jb] - Eachc

If we define new generators A, = fette and B, = =fattle thep

[Aaa Ab} - ieabcA07 [Baa Bb} - ieach67 [Aaa Bb] =0 (182)

Thus the new generators A, and B; each satisfy the angular mo-
mentum commutation relation and commute with each other. Thus
we can use the result of the angular momentum commutation re-
lation derived earlier and label the states with two angular mo-
mentum quantum numbers, one corresponding to A%, As and other
corresponding to B2, By, j; and j». Thus representations of the
Lorentz group are labeled by two quantum numbers (ji,j2) with

j1,26{077%717§7'..}'

e (j1,72) = (0,0) is the Lorentz scalar

® (j1,72) = (%, 0) is the chiral 2-component spinor

e (j1,72) = (0,3) is also chiral 2-component spinor

o (j1,72) = (%, %) is the 4-vector

® (j1,72) = (1,0) is the self-dual 2-form, F,

e (j1,j2) = (0,1) is the antiself-dual 2-form .,

® (j1,72) = (1,1) is the traceless part of the metric g,
Hy Spin 0

[t is one dimensional with basis vector |0,0). Thus the operators are



all numbers (1 x 1 matrices):

72 oy (o) 7, 10 (o),a:1,2,3. (183)

It is two dimensional with basis vectors {|3,3), |5, —3)}. The oper-
ators are now 2 X 2 matrices:

11yl _1 11
j\z {Iz, 7@ 2)} <2(2 + 1) , 0 ) (184)
55+ 1)

0
1
5 0\ _ o3
0 —1 2

g, (2l (0 1) o5 (DI (0 ) o2
9 —1 0 2

w DO —

In the problem set 1 we saw that the Pauli matrices satisfy the fol-

lowing commutation relations
Oq Oy Oc

[?7 5] - ZEabc?

Hl Spin 1

It is three dimensional with basis vectors {|1, 1), [1,0),|1,—1)}. The



operators are now 3 X 3 matrices:

11+1) 0 0
I Rk L ) TC I D B
0 0 1(141)
- ooy [ O)
7 00 0
00 —1
010
7 ooy 1 (1 o 1), 7 (oo 1
2\0 1 0 2
Hs Spin%

(185)



The operators are now 4 x 4 matrices

33+1) 0 0 0
2 {B2NE)5-9) 5.5} 0 2E+1) 0 0
/ 7 0 0 3+1) 0
0 0 0 3(3+1)
20 0 0
= 13DEHE-HEH |05 0 0
) 7 00 -1 0
00 0 —3
0 v3 0 0
J _
: 7 210 2 0 V3|’
0 0 V3 0
0 —iv3 0 0
7 BDEDE-DEH T [iVE 0 =2 0
’ 21 0 2% 0 —iV3
0 0 3 0

Notice that in each of the above case the matrices satisfy the same
commutation relation and that not more than one matrix is diagonal
(since otherwise commutation relation will not be satisfied).

Exercise: Construct Spin 2 matrices.
Spinor representation: Chiral, Dirac and Majorana

Chiral 2-component spinor (%, 0) transform in an irreducible repre-



sentation of the Lorentz group. Acting on this 2-component spinor

o? o o
A — B¢ — a:_'_a’Ka:_a
5 0= J 7 5 5
() _ond [
YL = ( Wy —rotation € . o (186)

o= () o 5 (2)

Chiral 2-component spinor (0, %) also transform in an irreducible
representation of the Lorentz group. Acting on this 2-component

spinor

o o o
Aazo Ba:_ a:_._&7Ka:__a
: 5 = J 7 5 5
Un _pad [ V1
VR = ( Wby —rotation € 2 by (187)

Vr = <22) ~boost e (Z;)

The Dirac spinor ¢p transforms in (3,0) @ (0, 3) representation of
the Lorentz group which is a reducible representation:

—i@ﬁg 0
Yp = < Vi ) —rotation ( ) 0 e_wﬁ.%’ > (Zﬁ;) (188)

R 10

(Y e
¢D — (wR l%bOOSt 0 e_ﬁﬁ.

no|Qy



Let us defines o = (1,5) and " = (1,—3a). We will use the so

called chiral representation of the gamma matrices
0 o
- 189

1
GHY — [ AV
4[%v]

satisfies the same commutation relation as the generators of the

Then

Lorentz group:
(1Y, §PO) = SHOpiP 4 GPHpY T _ GVOpPi . QP K

The Lorentz transformation of the 4-component Dirac spinor with
parameters w,,,, is then given by'

S = eznrS"” (190)

Where w),, is the "angle” by which z# — 2" plane is rotated. Re-
member that for 2 — 2 "rotation” is a boost in the z’-direction (a
hyperbolic rotation).

y i75-5/2
STOt(ﬁ> = G%W,LLVS’U — ( € O Zﬁoo—-’/Q ) (191)

! Dirac spinor is a 4-component object which transforms as (%, 0) @ (0, %) wy v is the "angle” of rotation

in the z# — ¥ plane.



