List of Topics for Linear Algebra:

1. Linear equations and matrices, reduction to row echelon form.
2. Vector spaces:
3. Vector spaces, subspaces, quotient spaces.
4. Linearly independent sets.
5. Linear transformations,
6. kernel and image,
7. projections (idempotent linear operators),
8. the set of linear transformations between two vector spaces forms a vector space.
9. Bases and dimension for finite dimensional vector spaces.
10. Matrices and linear transformations between finite dimensional vector spaces:
11. The matrix of a linear transformation with respect to a choice of bases,
12. similarity of matrices and change of basis for linear transformations.
13. The inverse of a matrix,
14. the determinant of a square matrix,
15. the characteristic polynomial,
16. the minimal polynomial,
17. eigenvectors,
18. eigenvalues.
19. Diagonalizability,
20. Cayley-Hamilton theorem.
21. Rank + nullity $=$ dimension of domain.
22. Finite dimensional inner product spaces:
23. The standard positive definite inner product on real n-space,
24. length and angle,
25. Gram-Schmidt orthogonalization.

Basic Analysis

1. Metric Spaces
2. Convergence of sequences in metric spaces
3. Cauchy sequences
4. completeness
5. contraction principle
6. Topological spaces
7. continuous maps
8. Hausdorff spaces
9. compactness
10. connectedness
11. The real numbers
12. The real numbers as a complete ordered field
13. closed bounded subsets are compact
14. intermediate value theorem
15. maxima and minima for continuous functions on a compact set
16. Differentiation
17. Differentiation of a function in one real variable
18. Mean Value Theorem
19. L'Hopital's Rule
20. Taylor's Theorem with error estimates
21. Riemann integration of functions in one real variable
22. Definition
23. Riemann integrable functions
24. integration and anti-differentiation
25. Sequences and series of functions
26. power series and interval of convergence
27. uniform convergence of sequences of functions
28. uniform convergence and integration
29. Differential Calculus for functions from n-space to reals and reals to n-space
30. Parametrized curves
31. tangent vectors
32. velocity
33. acceleration
34. partial derivatives
35. directional derivatives
36. the gradient
37. the chain rule
38. Taylor's theorem
10.local maxima and minima
11.level surfaces of functions
39. tangent planes to surfaces in 3-space
13.Lagrange multipliers
40. Differential Calculus for functions from n-space to m-space
41. notion of derivative
42. chain rule
43. inverse function theorem
44. implicit function theorem
45. Integral Calculus in several variables
46. The integral, path and surface integrals
47. Green's theorem in the plane
48. the divergence theorem in 3-space
49. the change of variables formula

Groups and Rings:

Elementary concepts (homomorphism, subgroup, coset, normal subgroup), Lagrange's Theorem, Cauchy's Theorem, commutator subgroup, Sylow theorems, structure of finitely generated Abelian groups, Symmetric, alternating, dihedral, and general linear groups, Commutative rings and ideals (principal, prime, maximal), Integral domains, Euclidean domains, principal ideal domains, polynomial rings, Eisenstein's irreduciblility criterion, Chinese remainder theorem.

Number Theory:

Subgroups of the Integers, Greatest Common Divisors, The Euclidean Algorithm, Prime Numbers, The Fundamental Theorem of Arithmetic, The Infinitude of Primes, Congruences, The Chinese Remainder Theorem, The Euler Totient Function, The Theorems of Fermat, Wilson and Euler, Solutions of Polynomial Congruences

